技术教育社区
www.teccses.org

概型的几何

封面

作者:(美) 艾森邦德 (Eisenbud.D

页数:294

出版社:世界图书出版公司

出版日期:2010

ISBN:9787510004742

电子书格式:pdf/epub/txt

内容简介

概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。
本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。目次:基本定义;例子;射影概型;经典结构;局部结构;概型和函子。

本书特色

概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。
本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。

目录

I Basic Definitions
I.1 Affine Schemes
I.1.1 Schemes as Sets
I.1.2 Schemes as Topological Spaces
I.1.3 An Interlude on Sheaf Theory References for the Theory of Sheaves
I.1.4 Schemes as Schemes (Structure Sheaves)
I.2 Schemes in General
I.2.1 Subschemes
I.2.2 The Local Ring at a Point
I.2.3 Morphisms
I.2.4 The Gluing Construction Projective Space
I.3 Relative Schemes
I.3.1 Fibered Products
I.3.2 The Category of S-Schemes
I.3.3 Global Spec
I.4 The Functor of Points
II Examples
II.1 Reduced Schemes over Algebraically Closed Fields
II. 1.1 Affine Spaces
II.1.2 Local Schemes
II.2 Reduced Schemes over Non-Algebraically Closed Fields
II.3 Nonreduced Schemes
II.3.1 Double Points
II.3.2 Multiple Points Degree and Multiplicity
II.3.3 Embedded Points Primary Decomposition
II.3.4 Flat Families of Schemes
Limits
Examples
Flatness
II.3.5 Multiple Lines
II.4 Arithmetic Schemes
II.4.1 Spec Z
II.4.2 Spec of the Ring of Integers in a Number Field
II.4.3 Affine Spaces over Spec Z
II.4.4 A Conic over Spec Z
II.4.5 Double Points in Al
III Projective Schemes
III.1 Attributes of Morphisms
III.1.1 Finiteness Conditions
III.1.2 Properness and Separation
III.2 Proj of a Graded Ring
III.2.1 The Construction of Proj S
III.2.2 Closed Subschemes of Proj R
III.2.3 Global Proj
Proj of a Sheaf of Graded 0x-Algebras
The Projectivization P(ε) of a Coherent Sheaf ε
III.2.4 Tangent Spaces and Tangent Cones
Affine and Projective Tangent Spaces
Tangent Cones
III.2.5 Morphisms to Projective Space
III.2.6 Graded Modules and Sheaves
III.2.7 Grassmannians
III.2.8 Universal Hypersurfaces
III.3 Invariants of Projective Schemes
III.3.1 Hilbert Functions and Hilbert Polynomials
1II.3.2 Flatness Il: Families of Projective Schemes
III.3.3 Free Resolutions
III.3.4 Examples
Points in the Plane
Examples: Double Lines in General and in p3
III.3.5 BEzout’s Theorem
Multiplicity of Intersections
III.3.6 Hilbert Series
IV Classical Constructions
V Local Constructions
VI Schemes and Functors
References
Index

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《概型的几何》
Article link:https://www.teccses.org/164959.html