
作者:欧仁.查尼阿克
页数:197
出版社:世界图书出版公司
出版日期:2016
ISBN:9787519215484
电子书格式:pdf/epub/txt
内容简介
本书面向的读者对象是有着传统计算机科学知识背景的研究人员和科学工作者,主要介绍基于统计的语言处理技术——单词标注(word tagging)、基于概率上下文无关语法(PCFG,probabilistic context-free grammar)的剖析(parsing,又称为句法分析)、语法归纳(grammar induction)、句法排歧(syntactic disambiguation)等。
作者简介
欧仁·查尼阿克(Eugene Charniak),美国布朗大学计算机科学系教授兼系主任。
胡凤国,中国传媒大学文学院副教授。
冯志伟,计算语言学家,专门从事语言学和计算机科学的跨学科研究,现为国家教育部语言文字应用研究所研究员、博士生导师、学术委员会委员。
相关资料
“这是一本有趣的关于自然语言处理(nlp,natural language processing)统计模型的普及读物。书写得很好,富有趣味性,稍有点数学知识背景的读者都能读懂。它为读者精选了许多统计nlp方面的话题加以介绍。书中对隐马尔可夫模型(hmm,hidden markov model)的向前—向后算法(forward-backward algorithm)和概率上下文无关语法的内部—外部算法(inside-outside algorithm)进行了直观的描述,具有很强的可操作性……这是自然语言处理领域为数不多的既自成体系又浅显易懂的好书之一。”
——david m. magerman
本书特色
本文面向的读者对象是具有传统计算机科学知识背景的研究人员和科学工作者,主要介绍基于统计的语言处理技术——单词标注(word tagging)、基于概率上下文无关语法(pcfg,probabilistic context-free grammar)的剖析(parsing,又称为句法分析)、语法归纳(grammar induction)、句法排歧(syntactic disambiguation)、词义分类(semantic word classes)、词义排歧(word-sense disambiguation)等技术,同时还介绍了相关的数学知识,每一章还附有一定数量的练习题。本书在国外好评如潮,已经成为学习统计自然语言处理的不可缺少的入门书之一。















