
作者:张勤海
页数:260
出版社:科学出版社
出版日期:2008
ISBN:9787030135599
电子书格式:pdf/epub/txt
内容简介
《大学数学科学丛书4:抽象代数》系统地介绍了抽象代数的基本概念、基本方法和基本理论。全书分为5章,前两章介绍具有一定深度和广度的群、环、域的一般知识;第3章介绍Galois理论,它是群论与域论结合所得到的深刻数学结果的具体体现;第4章介绍模与代数的有关知识;第5章介绍有限群的特征标理论及其初步应用。《大学数学科学丛书4:抽象代数》内容丰富、举例众多。特别注意通过分析例子概括出抽象概念。
本书特色
系统介绍了抽象代数的基本概念、基本方法、基本理论。全书共分5章,前两章分别介绍了具有一定深度和广度的群、环、域的一般知识;第3章介绍了galois理论,它是群论与域论结合所得到的深刻数学结果的具体体现;第4章介绍了模与代数的有关知识;第5章介绍了有限群的特征标理论及其初步应用。
目录
前言
本书所用的符号
第1章 群论
1.1 群和子群
1.2 规子群和商群
1.3 同态和同构
1.4 直积和半直积
1.5 群作用
1.6 sylow定理
1.7 jordan-h?lder定理
1.8 可解群和幂零群
1.9 psl(n,q)单性的证明
第2章 环与域
2.1 基本概念和例子
2.2 理想和同态
2.3 极大理想和素理想
2.4 整环里的因子分解
2.5 域的扩张
2.6 代数扩域
2.7 多项式的分裂域与正规扩域
2.8 有限域
2.9 有限可分扩域
第3章 galois理论
3.1 galois理论的基本定理
3.2 方程可用根式解的判别准则
3.3 galois理论的初步应用
第4章 模与代数
4.1 模与子模、商模
4.2 模的同态与同构
4.3 模的直和
4.4 自由模
4.5 主理想环上的有限生成模
4.6 张量积
4.7 代数的有关知识
4.8 半单代数的结构
第5章 结合代数与有限群的表示理论
5.1 结合代数的表示
5.2 群的表示与特征标
5.3 群的特征标表
5.4 有限群特征标理论的初步应用
习题提示
主要参考书目
索引
本书所用的符号
第1章 群论
1.1 群和子群
1.2 规子群和商群
1.3 同态和同构
1.4 直积和半直积
1.5 群作用
1.6 sylow定理
1.7 jordan-h?lder定理
1.8 可解群和幂零群
1.9 psl(n,q)单性的证明
第2章 环与域
2.1 基本概念和例子
2.2 理想和同态
2.3 极大理想和素理想
2.4 整环里的因子分解
2.5 域的扩张
2.6 代数扩域
2.7 多项式的分裂域与正规扩域
2.8 有限域
2.9 有限可分扩域
第3章 galois理论
3.1 galois理论的基本定理
3.2 方程可用根式解的判别准则
3.3 galois理论的初步应用
第4章 模与代数
4.1 模与子模、商模
4.2 模的同态与同构
4.3 模的直和
4.4 自由模
4.5 主理想环上的有限生成模
4.6 张量积
4.7 代数的有关知识
4.8 半单代数的结构
第5章 结合代数与有限群的表示理论
5.1 结合代数的表示
5.2 群的表示与特征标
5.3 群的特征标表
5.4 有限群特征标理论的初步应用
习题提示
主要参考书目
索引















