技术教育社区
www.teccses.org

微积分原理(下)

封面

作者:崔建莲

页数:356

出版社:电子工业出版社

出版日期:2023

ISBN:9787121464249

电子书格式:pdf/epub/txt

内容简介

微积分是理工科高等学校非数学类专业最基础、重要的一门核心课程。许多后继数学课程及物理和各种工程学课程都是在微积分课程的基础上展开的,因此学好这门课程对每一位理工科学生来说都非常重要。本套教材在传授微积分知识的同时,注重培养学生的数学思维、语言逻辑和创新能力,弘扬数学文化,培养科学精神。本套教材分上、下两册。上册内容包括实数集与初等函数、数列极限、函数极限与连续、导数与微分、微分学基本定理及应用、不定积分、定积分、广义积分和常微分方程。下册内容包括多元函数的极限与连续、多元函数微分学及其应用、重积分、曲线积分、曲面积分、数项级数、函数项级数、傅里叶级数和含参积分。

作者简介

崔建莲,清华大学数学系副教授。2002年7月获得中科院数学研究所博士学位,2004年4月北京大学博士后出站,香港大学访问学者,韩国首尔大学访问学者,美国威廉玛丽学院访问学者。2004年4月入职清华大学数学系,现为数学系副教授,主要研究方向为算子代数、算子理论及在量子信息中的应用。发表学术论文60多篇,SCI收录50多篇。

目录

目录

第10 章 多元函数的极限与连续··········1

10.1 n ? 中的点集拓扑和点列··········.1

10.1.1 n ? 中的点集拓扑···················1

10.1.2 n ? 中的点列·························6

10.1.3 n ? 的完备性·························7

最10.1.4 n ? 中的等价范数···················8

习题10.1 ··································.10

10.2 多元函数与多元向量值函数····.11

10.2.1 多元函数的概念··················.11

10.2.2 二元函数的图像··················.12

10.2.3 多元向量值函数··················.16

习题10.2 ··································.17

10.3 多元函数的极限···················.18

10.3.1 多元函数的重极限···············.18

10.3.2 多元函数的累次极限············.19

10.3.3 向量值函数的极限···············.21

习题10.3 ··································.23

10.4 多元函数和向量值函数的

连续性·······························.24

10.4.1 多元函数连续的概念············.24

10.4.2 多元函数对各个变量的分别

连续·······························.26

10.4.3 多元连续函数的性质············.27

习题10.4 ··································.28

第11 章 多元函数微分学················.30

11.1 多元函数的偏导数与全微分····.30

11.1.1 多元函数的偏导数···············.30

11.1.2 多元函数的全微分···············.32

11.1.3 函数可微的条件··················.34

11.1.4 全微分在函数近似计算中的

应用······························.37

习题11.1 ··································.38

11.2 高阶偏导数与复合函数的

微分··································.39

11.2.1 高阶偏导数·······················.39

11.2.2 复合函数的微分··················.41

11.2.3 一阶全微分的形式不变性·······.43

习题11.2 ··································.44

11.3 方向导数与梯度···················.46

11.3.1 方向导数·························.46

11.3.2 梯度······························.48

习题11.3 ··································.50

11.4 向量值函数的微分················.51

11.4.1 向量值函数的微分···············.51

11.4.2 复合映射的微分··················.54

习题11.4 ··································.55

11.5 隐函数微分法与逆映射微分法··.56

11.5.1 隐函数的微分····················.56

11.5.2 逆映射的微分····················.64

习题11.5 ··································.64

第12 章 多元函数微分学应用··········.67

12.1 多元函数微分学的几何应用····.67

12.1.1 空间曲线·························.67

12.1.2 空间曲面的切平面与法线·······.69

12.1.3 空间曲线的切线与法平面·······.72

习题12.1 ··································.76

12.2 高阶全微分与泰勒公式··········.77

12.2.1 高阶全微分·······················.77

12.2.2 泰勒公式·························.79

习题12.2 ··································.82

12.3 多元函数的极值···················.82

12.3.1 无条件极值·······················.83

12.3.2 条件极值·························.87

习题12.3 ··································.95

第13 章 重积分····························.98

13.1 二重积分的概念及性质··········.98

13.1.1 二重积分的概念··················.98

13.1.2 可积的条件·······················100

13.1.3 二重积分的性质··················101

习题13.1 ··································103

13.2 二重积分的计算···················104

13.2.1 直角坐标系·······················104

13.2.2 二重积分的坐标变换············108

习题13.2 ·································.114

13.3 三重积分···························.116

13.3.1 直角坐标系······················.117

13.3.2 一般坐标变换···················.119

13.3.3 柱坐标变换·······················120

13.3.4 球坐标变换·······················122

习题13.3 ··································124

13.4 重积分在几何和物理中的

应用··································125

13.4.1 空间曲面的面积··················126

13.4.2 重积分在物理中的应用··········128

习题13.4 ··································131

最13.5 n 重积分····························132

13.5.1 若当测度的定义··················132

13.5.2 若当可测的等价条件············134

13.5.3 若当测度的运算性质············135

13.5.4 n 重积分··························138

13.5.5 n 维球坐标变换··················139

第14 章 曲线积分·························143

14.1 第一型曲线积分——关于弧长

的曲线积分·························143

14.1.1 第一型曲线积分的概念··········143

14.1.2 第一型曲线积分的性质·········.145

14.1.3 第一型曲线积分的计算·········.146

14.1.4 柱面侧面积的计算··············.148

习题14.1 ·································.149

14.2 第二型曲线积分——关于坐标

的曲线积分························.150

14.2.1 第二型曲线积分的概念·········.150

14.2.2 两类曲线积分之间的关系······.151

14.2.3 第二型曲线积分的计算·········.151

习题14.2 ·································.155

14.3 格林公式···························.157

14.3.1 格林公式························.157

14.3.2 曲线积分与积分路径无关的

条件·····························.160

14.3.3 求微分式的原函数··············.161

14.3.4 全微分方程······················.164

习题14.3 ·································.166

第15 章 曲面积分························.170

15.1 第一型曲面积分——关于面积

的曲面积分························.170

15.1.1 第一型曲面积分的概念·········.170

15.1.2 第一型曲面积分的计算·········.171

习题15.1 ·································.174

15.2 第二型曲面积分——关于坐标

的曲面积分························.175

15.2.1 第二型曲面积分的概念·········.175

15.2.2 第二型曲面积分的计算·········.178

习题15.2 ·································

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《微积分原理(下)》
Article link:https://www.teccses.org/1515632.html