技术教育社区
www.teccses.org

弦论-第1卷

封面

作者:(美)J.波钦斯基

页数:402

出版社:世界图书出版公司

出版日期:2019

ISBN:9787519253998

电子书格式:pdf/epub/txt

内容简介

这套两卷本的《弦论》系统介绍了弦理论的各个方面。诺贝尔奖获得者Steven Weinberg教授称本书作者J.波钦斯基是弦理论最佳“入门”引导者,他发现的D-膜是研究各种不同弦理论之间的对偶关系的重要组成部分。此外,作者还有从繁杂的数学公式中发现其物理重要性并能清楚地向读者阐述的超人智慧。本套书是弦理论和数学物理中的诸多专家都公认的难得的佳作,值得每一位想学习和掌握弦理论的研究生和科研人员拥有。
本书是其中的第1卷,为英文版。共分9章,内容包括共形场论、波利亚科夫路径积分、弦谱、字符串S矩阵等。

作者简介

J.波钦斯基(Joseph Polchinski),加州大学圣塔芭芭拉分校(Institute for Theoretical Physics University of California at Santa Barbara)的理论物理学家。

本书特色

这套两卷本的《弦论》系统介绍了弦理论的各个方面。诺贝尔奖获得者Steven Weinberg教授称本书作者是弦理论最“入门”引导者, 他发现的D-膜是研究各种不同弦理论之间的对偶关系的重要组成部分。此外,作者还有从繁杂的数学公式中发现其物理重要性并能清楚地向读者阐述的超人智慧。本套书是弦理论和数学物理中的诸多专家都公认的难得的佳作,值得每一位想学习和掌握弦理论的研究生和科研人员拥有。

目录

Foreword
Preface
Notation
1 A first look at strings
1.1 Why strings?
1.2 Action principles
1.3 The open string spectrum
1.4 Closed and unoriented strings
Exercises
2 Conformal field theory
2.1 Massless scalars in two dimensions
2.2 The operator product expansion
2.3 Ward identities and Noether’s theorem
2.4 Conformal invariance
2.5 Free CFTs
2.6 The Virasoro algebra
2.7 Mode expansions
2.8 Vertex operators
2.9 More on states and operators
Exercises
3 The Polyakov path integral
3.1 Sums over world-sheets
3.2 The Polyakov path integral
3.3 Gauge fixing
3.4 The Weyl anomaly
3.5 Scattering amplitudes
3.6 Vertex operators
3.7 Strings in curved spacetime
Exercises
4 The string spectrum
4.1 Old covariant quantization
4.2 BRST quantization
4.3 BRST quantization of the string
4.4 The no-ghost theorem
Exercises
5 The string S-matrix
5.1 The circle and the torus
5.2 Moduli and Riemann surfaces
5.3 The measure for moduli
5.4 More about the measure
Exercises
6 Tree-level amplitudes
6.1 Riemann surfaces
6.2 Scalar expectation values
6.3 The bc CFT
6.4 The Veneziano amplitude
6.5 Chan-Paton factors and gauge interactions
6.6 Closed string tree amplitudes
6.7 General results
Exercises
7 One-loop amplitudes
7.1 Riemann surfaces
7.2 CFT on the torus
7.3 The torus amplitude
7.4 Open and unoriented one-loop graphs
Exercises
8 Toroidal eompaetification and T-duality
8.1 Toroidal compactification in field theory
8.2 Toroidal compactification in CFT
8.3 Closed strings and T-duality
8.4 Compactification of several dimensions
8.5 Orbifolds
8.6 Open strings
8.7 D-branes
8.8 T-duality of unoriented theories
Exercises
9 Higher order amplitudes
9.1 General tree-level amplitudes
9.2 Higher genus Riemann surfaces
9.3 Sewing and cutting world-sheets
9.4 Sewing and cutting CFTs
9.5 General amplitudes
9.6 String field theory
9.7 Large order behavior
9.8 High energy and high temperature
9.9 Low dimensions and noncritical strings
Exercises
Appendix A: A short course on path integrals
A.1 Bosonic fields
A.2 Fermionic fields
Exercises
References
Glossary
Index

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《弦论-第1卷》
Article link:https://www.teccses.org/993433.html