技术教育社区
www.teccses.org

数理逻辑引论与归结原理

封面

作者:周俊红

页数:335页

出版社:科学出版社

出版日期:2017

ISBN:9787030228994

电子书格式:pdf/epub/txt

内容简介

  Introduction to Mathematical Logic Resolution Principle, Second Edition in nine chapters, discusses Boolean algebra theory, propositional calculus and predicated calculus theory, resolution principle theory and the latest theory ofmultivalue logic. The book also includes supplement or altemations on the proofofthe completion of K in first-ordcr system,conceming “Quantitative Logic”.

目录

Preface
Chapter 1 Preliminaries
1.1 Partially ordered sets
1.2 Lattices
1.3 Boolean algebras

Chapter 2 Propositional Calculus
2.1 Propositions and their symbolization
2.2 Semantics of propositional calculus
2.3 Syntax of propositional calculus

Chapter 3 Semantics of First Order Predicate Calculus
3.1 First order languages
3.2 Interpretations and logically valid formulas
3.3 Logical equivalences

Chapter 4 Syntax of First Order Predicate Calculus
4.1 The formal system KL
4.2 Provable equivalence relations
4.3 Prenex normal forms
4.4 Completeness of the first order system KL
最4.5 Quantifier-free formulas

Chapter 5 Skolem’s Standard Forms and Herbrand’s Theorems
5.1 Introduction
5.2 Skolem standard forms
5.3 Clauses
最5.4 Regular function systems and regular universes
5.5 Herbrand universes and Herbrand’s theorems
5.6 The Davis-Putnam method

Chapter 6 Resolution Principle
6.1 Resolution in propositional calculus
6.2 Substitutions and unifications
6.3 Resolution Principle in predicate calculus
6.4 Completeness theorem of Resolution Principle
6.5 A simple method for searching clause sets S

Chapter 7 Refinements of Resolution
7.1 Introduction
7.2 Semantic resolution
7.3 Lock resolution
7.4 Linear resolution

Chapter 8 Many-Valued Logic Calculi
8.1 Introduction
8.2 Regular implication operators
8.3 MV-algebras
8.4 Lukasiewicz propositional calculus
8.5 R0-algebras
8.6 The propositional deductive system L最

Chapter 9 Quantitative Logic
9.1 Quantitative logic theory in two-valued propositional logic system L
9.2 Quantitative logic theory in L ukasiewicz many-valued propositional logic systems Ln and Luk
9.3 Quantitative logic theory in many-valued R0-propositional logic systems L最n and L最
9.4 Structural characterizations of maximally consistent theories
9.5 Remarks on Godel and Product logic systems
Bibliography
Index

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《数理逻辑引论与归结原理》
Article link:https://www.teccses.org/881538.html