
作者:(意)博菲
页数:685
出版社:世界图书出版公司
出版日期:2016
ISBN:9787519205355
电子书格式:pdf/epub/txt
内容简介
非标准有限元法,尤其是混合元法,是应用的核心。该书中,作者给出了开始于有限维的表示法,然后到希伯特空间方程,最后考虑逼近法,其中包括稳定方法和本征值问题。该书还介绍了标准有限元逼近法, 随后介绍了H(div)和H(curl)混合方程逼近的构成要素。该通用理论被用在如下经典例子中:Dirichlet问题、 Stokes问题、平板问题、弹性力学和电磁学。
作者简介
Daniele Boffi(D. 博菲, 意大利)是国际知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
本书特色
非标准有限元法,尤其是混合元法,是应用的核心。该书中,作者给出了开始于有限维的表示法,然后到希伯特空间方程,最后考虑逼近法,其中包括稳定方法和本征值问题。该书还介绍了标准有限元逼近法, 随后介绍了h(div)和h(curl)混合方程逼近的构成要素。该通用理论被用在如下经典例子中:dirichlet问题、 stokes问题、平板问题、弹性力学和电磁学。
目录
1 Variational Formulations and Finite Element Methods1.1 Classical Methods1.2 Model Problems and Elementary Properties of SomeFunctional Spaces1.2.1 Eigenvalue Problems1.3 Duality Methods1.3.1 Generalities1.3.2 Examples for Symmetric Problems1.3.3 Duality Methods for Non Symmetric Bilinear Forms1.3.4 Mixed Eigenvalue Problems1.4 Domain Decomposition Methods, Hybrid Methods1.5 Modified Variational Formulations1.5.1 Augmented Formulations1.5.2 Perturbed Formulations1.6 Bibliographical Remarks2 Function Spaces and Finite Element Approximations2.1 Properties of the Spaces Hm(Ω), H(div;Ω), and H(curl;Ω)2.1.1 Basic Properties2.1.2 Properties Relative to a Partition ofΩ2.1.3 Properties Relative to a Change of Variables2.1.4 De Rham Diagram2.2 Finite Element Approximations of HI (Ω) and H2(Ω)2.2.1 Conforming Methods2.2.2 Explicit Basis Functions on Triangles and Tetrahedra2.2.3 Nonconforming Methods2.2.4 Quadrilateral Finite Elements on Non Affine Meshes2.2.5 Quadrilateral Approximation of Scalar Functions2.2.6 Non Polynomial Approximations2.2.7 Scaling Arguments2.3 Simplicial Approximations of H(div;Ω) and H(curl;Ω)2.3.1 Simplicial Approximations of H(div;Ω)2.3.2 Simplicial Approximation of H(curlΩ)2.4 Approximations of H(div; K) on Rectangles and Cubes2.4.1 Raviart-Thomas Elements on Rectangles and Cubes2.4.2 Other Approximations of H(div; K) on Rectangles2.4.3 Other Approximations of H(div; K) on cubes2.4.4 Approximations of H(curl; K) on Cubes2.5 Interpolation Operator and Error Estimates2.5.1 Approximations of H(div; K)2.5.2 Approximation Spaces for H(div;Ω)2.5.3 Approximations of H(curl;Ω)2.5.4 Approximation Spaces for H(curl;Ω)2.5.5 Quadrilateral and Hexahedral Approximation of Vector-Valued Functions in H(div;Ω)and H(curl;Ω)2.5.6 Discrete Exact Sequences2.6 Explicit Basis Functions for H(div; K) and H(curl; K) on Triangles and Tetrahedra2.6.1 Basis Functions for H(div; K):The Two-Dimensional Case2.6.2 Basis Functions for H(div; K):The Three-Dimensional Case2.6.3 Basis Functions for H(curl; K):The Two-Dimensional Case2.6.4 Basis Functions for H(curl; K):The Three-Dimensional Case2.7 Concluding Remarks3 Algebraic Aspects of Saddle Point Problems3.1 Notation, and Basic Results in Linear Algebra3.1.1 Basic Definitions3.1.2 Subspaces3.1.3 Orthogonal Subspaces3.1.4 Orthogonal Projections3.1.5 Basic Results3.1.6 Restrictions of Operators3.2 Existence and Uniqueness of Solutions:The Solvability Problem3.2.1 A Preliminary Discussion3.2.2 The Necessary and Sufficient Condition3.2.3 Sufficient Conditions3.2.4 Examples3.2.5 Composite Matrices4 Saddle Point Problems in Hilbert Spaces5 Approximation of Saddle Point Problems6 Complements: Stabilisation Methods, Eigenvalue Problems7 Mixed Methods for Elliptic Problems8 Incompressible Materials and Flow Problems9 Complements on Elasticity Problems10 Complements on Plate Problems11 Mixed Finite Elements for Electromagnetic ProblemsReferencesIndex














