
作者:巴舍沃夫
页数:345
出版社:哈尔滨工业大学出版社
出版日期:2016
ISBN:9787560357584
电子书格式:pdf/epub/txt
内容简介
《数学分析原理(英文)》由哈尔滨工业大学出版社出版。
本书特色
《数学分析原理(英文)》是数学分析方面的经典著作,主要介绍了数列的收敛性、点集拓扑、黎曼积分、超越函数、傅里叶级数等内容。它也可以作为实数分析,泛函分析,谐波分析等课程的课外读物。对于需要学习微积分的非数学专业的学生,这本书是一个好的选择。
目录
1 Sets and Proofs
1.1 Sets, Elements, and Subsets
1.2 Operations on Sets
1.3 Language of Logic
1.4 Techniques of Proof
1.5 Relations
1.6 Functions
1.7 Axioms of Set Theory
Exercises
2 Numbers
2.1 SystemN
2.2 Systems Z and Q
2.3 Least Upper Bound Property and Q
2.4 System R
2.5 Least Upper Bound Property and R
2.6 Systems R, C, and 最R
2.7 Cardinality
Exercises
3 Convergence
3.1 Convergence ofNumerical Sequences
3.2 Cauchy Criterion for Convergence
3.3 Ordered Field Structure and Convergence
3.4 Subsequences
3.5 NumericalSeries
3.6 Some Series of Particular Interest
3.7 AbsoluteConvergence
3.8 Number e
Exercises
4 Point Set Topology
4.1 MetricSpaces
4.2 Open and Closed Sets
4.3 Completeness
4.4 Separability
4.5 TotaIBoundedness
4.6 Compactness
4.7 Perfectness
4.8 Connectedness
4.9最 Structure of Open and Closed Sets
Exercises
5 Continuity
5.1 Definition and Examples
5.2 Continuity and Limits
5.3 Continuity and Compactness
5.4 Continuity and Connectedness
5.5 Continuity and Oscillation
5.6 Continuity of Rk-valued Functions
Exercises
6 Space C(E, E’)
6.1 UniformContinuity
6.2 UniformConvergence
6.3 Completeness of C(E, E)
6.4 Bernstein and Weierstrass Theorems
6.5最 Stone and Weierstrass Theorems
6.6最 Ascoli-Arzela Theorem
Exercises
7 Differentiation
7.1 Derivative
7.2 Differentiation and Continuity
7.3 Rules of Differentiation
7.4 Mean-ValueTheorems
7.5 Taylor’sTheorem
7.6最 DifferentialEquations
7.7最 Banach Spaces and the Space C1 (a,b)
7.8 A View to Differentiation in Rk
Exercises
8 Bounded Variation
8.1 Monotone Functions
8.2 CantorFunction
8.3 Functions ofBoundedVariation
8.4 Space BV(a, b)
8.5 Continuous Functions of Bounded Variation
……















