技术教育社区
www.teccses.org

扩散 马尔可夫过程和鞅 第1卷

封面

作者:L.C.G.Rogers,D.Williams 著

页数:566

出版社:世界图书出版公司

出版日期:2003

ISBN:9787506259217

电子书格式:pdf/epub/txt

内容简介

Longago(orsoitseemstoday),Chungwroteonpage196ofhisbook[1]:’Onewondersifthepresenttheoryofstochasticprocessesisnotstilltoodifficultforapplications.’Advancesinthetheorysincethattimehavebeenphenomenal,butthesehavebeenaccompaniedbyanincreaseinthetechnicaldifficultyofthesubjectsobewilderingastogiveaquaintcharmtoChung’suseoftheword’still’.Meyerwritesintheprefacetohisdefinitiveaccountofstochasticintegraltheory:’…ilfaut…uncoursdesixmoissurlesdefinitions.Quepeutonyfaire?’IhavethoughtupasintuitiveapictureofthesubjectasIcan,writtenitdownatspeed,andrefusedtobeluredbackbypiety(orevenbywit!)tocancelhalfaline.’First’intuition,whichiswhatyouneedwhenyouarelearningthesubject,israw,roughandready;and,asyouhaveguessed,Imaketheexcusethatitdemandsacompatiblestyleandlackofpolish.NotethatIwrote’firstintuition’.Consideranexample.Meyer’sconceptofarightprocessisexactlyrightforMarkovprocesstheory,buttheconceptistheresultofalongevolution.Tounderstanditproperly,youneedahighlydevelopedintuition,andthattakestimetoacquire.Thedifficultywiththebestadvancedliteratureisthatitsauthorshavetoomuchintuition;nevermakethemistakeofthinkingotherwise.

本书特色

Chung wrote on page 196 of his book[1]:’One wonders if the present theory of stochastic processes is not still too difficult for applications.’Advances in the theory since that time have been phenomenal,but these have been accompanied by an increase in the technical difficulty of the subject so bewildering as to give a quaint charm to Chung’s use of the word ‘still’.Meyer writes in the preface to his definitive account of stochastic integral theory:’…il faut…

目录

SomeFrequentlyUsedNotation
CHAPTERⅠ.BROWNIANMOTION
1.INTRODUCTION
 1.WhatisBrownianmotion,andwhystudyit
 2.Brownianmotionasamartingale
 3.BrownianmotionasaGaussianprocess
 4.BrownianmotionasaMarkovprocess
 5.Brownianmotionasadiffusionandmartingale
2.BASICSABOUTBROWNIANMOTION
 6.ExistenceanduniquenessofBrownianmotion
 7.Skorokhodembedding
 8.Donsker”sInvariancePrinciple
 9.Exponentialmartingalesandfirst-passagedistributions
 10.Somesample-pathproperties
 11.Quadraticvariation
 12.ThestrongMarkovproperty
 13.Reflection
 14.ReflectingBrownianmotionandlocaltime
 15.Kolmogorov”stest
 16.BrownianexponentialmartingalesandtheLawoftheIteratedLogarithm
3.BROWNIANMOTIONINHIGHERDIMENSIONS
 17.SomemartingalesforBrownianmotion
 18.Recurrenceandtransienceinhigherdimensions
 19.SomeapplicationsofBrownianmotiontocomplexanalysis
 20.WindingsofplanarBrownianmotion
 21.Multiplepoints,conepoints,cutpoints
 22.PotentialtheoryofBrownianmotioninRdd≥3
 23.Brownianmotionandphysicaldiffusion
4.GAUSSIANPROCESSESANDLEVYPROCESSES
 Gaussianprocesses
  24.ExistenceresultsforGaussianprocesses
  25.Continuityresults
  26.Isotropicrandomflows
  27.Dynkin”sIsomorphismTheorem
 Levyprocesses
  28.Levyprocesses
  29.FluctuationtheoryandWiener-Hopffactorisation
  30.LocaltimeofLevyprocesses
CHAPTERⅡ.SOMECLASSICALTHEORY
 1.BASICMEASURETHEORY
  Measurabilityandmeasure
   1.Measurablespaces;a-algebras;n-systems;d-systems
   2.Measurablefunctions
   3.Monotone-ClassTheorems
   4.Measures;theuniquenesslemma;almosteverywhere;a.e.u,∑
   5.Caratheodory”sExtensionTheorem
   6.Innerandouteru-measures;completion
  Integration
   7.Definitionoftheintegralfdu
   8.Convergencetheorems
   9.TheRadon-NikodymTheorem;absolutecontinuity;<   10.Inequalities;andspacesp≥1
  Productstructures
   11.Producta-algebras
   12.Productmeasure;Fubini”sTheorem
   13.Exercises
 2.BASICPROBABILITYTHEORY
  Probabilityandexpectation
   14.Probabilitytriple;almostsurelya.s.;a.s.P,a.s.P,F
   15.limsupEn:FirstBorel-CantelliLemma
   16.Lawofrandomvariable;distributionfunction:jointlaw
   17.Expectation:EX;F
   18.Inequalities:Markov,Jensen,Schwarz,Tchebychev
   19.Modesofconvergenceofrandomvariables
  UniformintegrabilityandL1convergence
   20.Uniformintegrability
   21.L1convergence
  Independence
   22.Independenceofa-algebrasandofrandomvariables
   23.Existenceoffamiliesofindependentvariables
   24.Exercises
3.STOCHASTICPROCESSES
4.DISCRETE-PARAMETERMARTINGALETHEORY
5.CONTINUOUS-PARAMETERSUPERMARTINGALES
CHAPTERⅢ.MARKOVPROCESSES
1.TRANSITIONFUNCTIONSANDRESOLVENTS
2.FELLER-DYNKINPROCESSES
3.ADDITIVEFUNCTIONALS
4.APPROACHTORAYPROCESSES:
5.RAYPROCESSES
6.APPLICATIONS
ReferencesforVolumes1and2
IndextoVolumes1and2

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《扩散 马尔可夫过程和鞅 第1卷》
Article link:https://www.teccses.org/60017.html