
作者:L.C.G.Rogers,D.Williams 著
页数:566
出版社:世界图书出版公司
出版日期:2003
ISBN:9787506259217
电子书格式:pdf/epub/txt
内容简介
Longago(orsoitseemstoday),Chungwroteonpage196ofhisbook[1]:’Onewondersifthepresenttheoryofstochasticprocessesisnotstilltoodifficultforapplications.’Advancesinthetheorysincethattimehavebeenphenomenal,butthesehavebeenaccompaniedbyanincreaseinthetechnicaldifficultyofthesubjectsobewilderingastogiveaquaintcharmtoChung’suseoftheword’still’.Meyerwritesintheprefacetohisdefinitiveaccountofstochasticintegraltheory:’…ilfaut…uncoursdesixmoissurlesdefinitions.Quepeutonyfaire?’IhavethoughtupasintuitiveapictureofthesubjectasIcan,writtenitdownatspeed,andrefusedtobeluredbackbypiety(orevenbywit!)tocancelhalfaline.’First’intuition,whichiswhatyouneedwhenyouarelearningthesubject,israw,roughandready;and,asyouhaveguessed,Imaketheexcusethatitdemandsacompatiblestyleandlackofpolish.NotethatIwrote’firstintuition’.Consideranexample.Meyer’sconceptofarightprocessisexactlyrightforMarkovprocesstheory,buttheconceptistheresultofalongevolution.Tounderstanditproperly,youneedahighlydevelopedintuition,andthattakestimetoacquire.Thedifficultywiththebestadvancedliteratureisthatitsauthorshavetoomuchintuition;nevermakethemistakeofthinkingotherwise.
本书特色
Chung wrote on page 196 of his book[1]:’One wonders if the present theory of stochastic processes is not still too difficult for applications.’Advances in the theory since that time have been phenomenal,but these have been accompanied by an increase in the technical difficulty of the subject so bewildering as to give a quaint charm to Chung’s use of the word ‘still’.Meyer writes in the preface to his definitive account of stochastic integral theory:’…il faut…
目录
CHAPTERⅠ.BROWNIANMOTION
1.INTRODUCTION
1.WhatisBrownianmotion,andwhystudyit
2.Brownianmotionasamartingale
3.BrownianmotionasaGaussianprocess
4.BrownianmotionasaMarkovprocess
5.Brownianmotionasadiffusionandmartingale
2.BASICSABOUTBROWNIANMOTION
6.ExistenceanduniquenessofBrownianmotion
7.Skorokhodembedding
8.Donsker”sInvariancePrinciple
9.Exponentialmartingalesandfirst-passagedistributions
10.Somesample-pathproperties
11.Quadraticvariation
12.ThestrongMarkovproperty
13.Reflection
14.ReflectingBrownianmotionandlocaltime
15.Kolmogorov”stest
16.BrownianexponentialmartingalesandtheLawoftheIteratedLogarithm
3.BROWNIANMOTIONINHIGHERDIMENSIONS
17.SomemartingalesforBrownianmotion
18.Recurrenceandtransienceinhigherdimensions
19.SomeapplicationsofBrownianmotiontocomplexanalysis
20.WindingsofplanarBrownianmotion
21.Multiplepoints,conepoints,cutpoints
22.PotentialtheoryofBrownianmotioninRdd≥3
23.Brownianmotionandphysicaldiffusion
4.GAUSSIANPROCESSESANDLEVYPROCESSES
Gaussianprocesses
24.ExistenceresultsforGaussianprocesses
25.Continuityresults
26.Isotropicrandomflows
27.Dynkin”sIsomorphismTheorem
Levyprocesses
28.Levyprocesses
29.FluctuationtheoryandWiener-Hopffactorisation
30.LocaltimeofLevyprocesses
CHAPTERⅡ.SOMECLASSICALTHEORY
1.BASICMEASURETHEORY
Measurabilityandmeasure
1.Measurablespaces;a-algebras;n-systems;d-systems
2.Measurablefunctions
3.Monotone-ClassTheorems
4.Measures;theuniquenesslemma;almosteverywhere;a.e.u,∑
5.Caratheodory”sExtensionTheorem
6.Innerandouteru-measures;completion
Integration
7.Definitionoftheintegralfdu
8.Convergencetheorems
9.TheRadon-NikodymTheorem;absolutecontinuity;<
Productstructures
11.Producta-algebras
12.Productmeasure;Fubini”sTheorem
13.Exercises
2.BASICPROBABILITYTHEORY
Probabilityandexpectation
14.Probabilitytriple;almostsurelya.s.;a.s.P,a.s.P,F
15.limsupEn:FirstBorel-CantelliLemma
16.Lawofrandomvariable;distributionfunction:jointlaw
17.Expectation:EX;F
18.Inequalities:Markov,Jensen,Schwarz,Tchebychev
19.Modesofconvergenceofrandomvariables
UniformintegrabilityandL1convergence
20.Uniformintegrability
21.L1convergence
Independence
22.Independenceofa-algebrasandofrandomvariables
23.Existenceoffamiliesofindependentvariables
24.Exercises
3.STOCHASTICPROCESSES
4.DISCRETE-PARAMETERMARTINGALETHEORY
5.CONTINUOUS-PARAMETERSUPERMARTINGALES
CHAPTERⅢ.MARKOVPROCESSES
1.TRANSITIONFUNCTIONSANDRESOLVENTS
2.FELLER-DYNKINPROCESSES
3.ADDITIVEFUNCTIONALS
4.APPROACHTORAYPROCESSES:
5.RAYPROCESSES
6.APPLICATIONS
ReferencesforVolumes1and2
IndextoVolumes1and2
Article link:https://www.teccses.org/60017.html















