
作者:何绍溟著
页数:225页
出版社:北京理工大学出版社
出版日期:2023
ISBN:9787576331752
电子书格式:pdf/epub/txt
内容简介
飞行器制导系统设计是飞行器设计的核心学科,是充分发挥飞行器的性能,使飞行器“飞准”并实现相应战术指标的关键,也是将《导弹系统概论》、《导弹飞行力学》、《制导控制系统原理》等核心专业理论课程有机串联的关键。为此,面向研究生教学,结合编者在国内外多年的研究成果,精心打造《Optimal Guidance Laws with Multiple Constraints》英文教材。将飞行器制导系统设计作为重要的专业核心之一,有利于形成系统化的课程体系,是打通学生从学到用的关键环节,也是解决从学校到工作岗位或继续深造最后一公里的核心方法。本教材针对具有代表性的战术导弹,主要介绍了目前战术导弹常用的多约束制导律的类型、工作原理、设计与典型应用,并阐述了各类制导律的适用任务场景。最后,介绍了对关键制导律进行试验验证的室内演示系统与原理,给出室内飞行的验证方法。
作者简介
何绍溟,北京理工大学宇航学院教授,博士生导师,入选 青年人才计划。主要从事飞行器制导、多目标跟踪与决策、人工智能在航空航天中的应用等方向研究,围绕多约束条件下的 制导以及复杂环境下的低成本多目标跟踪等前沿领域的基础性、共性关键科学与技术问题开展研究。目前主持自然科学基金、军科委HC基金、173计划领域基金等国防科研项目。以 作者通讯作者在AIAA J 、IEEE TAES等期刊发表论文30余篇;在 Springer 出版飞行器 制导专著 1 部;担任SCI期刊《International Journal of Aerospace Engineering》编委、《Chinese Journal of Aeronautics》客座编委、《Space: Science and Technology》青年编委、《Defence Technology》青年编委,IFAC Aerospace Control Technical Committee Member,IEEE Multi-Robot System Technical Committee Member。
目录
1.1 Background and Motivation
1.2 Optimal Guidance Problem
Example: Energy Minimization
1.3 Aim and Organization
References
Chapter 2 Optimal Error Dynamics in Missile Guidance
2.1 Preliminaries and Motivations
2.1.1 Missile-Target Relative Kinematics
2.1.2 Motivations
2.1.3 Preliminaries
2.2 Optimal Error Dynamics
2.2.1 Derivation of the Proposed Optimal Error Dynamics
2.2.2 Discussion of the Proposed Optimal Error Dynamics
2.2.3 Potential Significance of the Proposed Optimal Error Dynamics
2.2.4 General Approach for Guidance Law Design
2.3 Illustrative Examples
2.3.1 Homing Guidance
2.3.2 Impact Time Control
2.3.3 Impact Angle Control
2.3.4 Impact Angle and Impact Time Control
2.4 Simulation Results
2.4.1 Homing Guidance
2.4.2 Alleviating Transition Effect
2.4.3 Shaping Aerodynamic Maneuverability
2.4.4 Impact Time Control
2.4.5 Impact Angle Control
2.4.6 Impact Time and Angle Control
2.5 Summary
References
Chapter 3 Optimal Trajectory Shaping Guidance Law with Seeker’s Field-of-View Constraint
3.1 Trajectory Shaping for Impact Time Control with Seeker’s FoV Constraint
3.1.1 Problem Formulation
3.1.2 Impact Time Guidance Law Design
3.2 Analysis of Proposed Guidance Law
3.2.1 Optimality and Convergence of Impact Time Error
3.2.2 Velocity Lead Angle Analysis
3.2.3 Guidance Command Analysis
3.2.4 Selection of th (x)
3.3 Numerical Simulations
3.3.1 Performance with Different Impact Times
3.3.2 Performance with Different Velocity Lead Angle Constraints
3.3.3 Comparison with Other Guidance Laws
3.4 Trajectory Shaping for Impact Angle Control with Seeker’s FoV Constraint
3.4.1 Problem Formulation
3.4.2 Impact Angle Guidance Law Design
3.5 Analysis of Proposed Guidance Law
3.6 Numerical Simulations
3.6.1 Performance with Different Impact Angles
3.6.2 Performance with Different Velocity Lead Angle Constraints
3.6.3 Comparison with Other Guidance Laws
3.7 Summary
References
Chapter 4 Nonlinear Optimal Trajectory Shaping Guidance for Impact Angle Control
4.1 Backgrounds and Preliminaries
4.1.1 Engagement Geometry
4.1.2 Reference Frame and Relative Engagement Geometry
4.1.3 Preliminary Concepts and Problem Formulation
4.2 Derivation of the Nonlinear Optimal Guidance Law
4.2.1 Optimal Guidance Law for Perfect Interception
4.2.2 Optimal Guidance Law with Relative Flight Path Angle Constraint
4.3 Analysis of Proposed Guidance Law
4.3.1 Particular Case: Stationary Target Interception
4.3.2 Convergence of Velocity Lead Angle and Impact Angle Error
4.3.3 Characteristics of Guidance Command
4.3.4 Capture Condition
4.4 Engagement Simulation
4.4.1 Scenario 1
4.4.2 Scenario 2
4.4.3 Scenario 3
4.5 Summary
References
Chapter 5 Nonlinear Optimal Trajectory Shaping Guidance for Impact Vector Control
5.1 Preliminaries and Problem Formulation
5.1.1 Engagement Geometry
5.1.2 Relative Engagement Geometry in Reference Frame
5.1.3 Problem Formulation
5.2 Derivation of Nonlinear Optimal Guidance Law
5.2.1 Optimal Guidance Law for Perfect Interception
5.2.2 Optimal Guidance Law with Terminal Flight Direction Constraint
5.3 Analysis of Proposed Guidance Law
5.3.1 Partieular Case:~” =0
5.3.2 Convergence Analysis
5.3.3 Characteristics of Guidance Command
5.4 Engagement Simulation
5.4.1 Scenario 1
5.4.2 Scenario 2
5.4.3 Scenario 3
5.5 Summary
Appendix A.Derivation of Eq.(5.63)
References
Chapter 6 Optimal Trajectory Shaping Guidance with Observability Enhancement
6.1 Observability Under Proportional Navigation Guidance
6.1.1 Geometric Metric for Observability















