
作者:吴文俊
页数:304
出版社:科学出版社
出版日期:1978
ISBN:9787030285072
电子书格式:pdf/epub/txt
内容简介
一个空间嵌入另一空间(例如欧氏空间)是否可能以及这些嵌入所依据的同痕的分类问题,已成为拓扑学中重要的中心问题之一。也是许多拓扑学家从各种不同角度用各种不同方法研究的对象之一。本书是作者从1954年以来在这方面的研究工作的一个总结报告,它的方法在于研究空间的去核p重积,即将p重积除去对角以后所余的空间,这一概念可追溯到vanKampen早在1932年的一篇重要论文。其次再应用PASmith有关周期变换的理论以获得若干作为Smith特殊群中上类的不变量,它们之为0是嵌入的必要条件而在某些特别情形又同时为充分条件关于嵌入的许多已知结果以及一些新的结果,虽有着种种不同的来源,都可用这一统一的方法得出、浸入与同痕也可用同样办法处理并得出相应的类似结果。
目录
2时Kn∈R2n的充要条件
6.5 浸入的主要定理——n>3时Kno∈R2n-1的充要条件
6.6 同痕的主要定理——n>1时f,g:Kn∈R2n+1同痕的充要条件
第7章 流形在欧氏空间中的嵌入、浸入与同痕
7.1 组合流形中的周期变换
7.2 组合流形的一些充分性定理
7.3 组合流形的嵌入问题
7.4 组合流形的浸入
7.5 一般理论在微分流形时的一个推广
历史性注释
6.5 浸入的主要定理——n>3时Kno∈R2n-1的充要条件
6.6 同痕的主要定理——n>1时f,g:Kn∈R2n+1同痕的充要条件
第7章 流形在欧氏空间中的嵌入、浸入与同痕
7.1 组合流形中的周期变换
7.2 组合流形的一些充分性定理
7.3 组合流形的嵌入问题
7.4 组合流形的浸入
7.5 一般理论在微分流形时的一个推广
历史性注释















