技术教育社区
www.teccses.org

数学分析习题课讲义(3)/李傅山

封面

作者:李傅山,王培合

页数:388

出版社:北京大学出版社

出版日期:2017

ISBN:9787301297650

电子书格式:pdf/epub/txt

内容简介

”    《数学分析习题课讲义3》是与华东师范大学数学系编写的教材《数学分析(第四版)》配套的学习辅导书,内容安排上与教材相一致,是在作者近二十年讲授“数学分析”课程和参与考研辅导以及全国大学生数学竞赛辅导所积累的大量教学资料的基础上多次修订而成的. 本书共分三册,按节进行编写,每节先梳理知识结构,再按照题目的类型和难度对教材中的习题进行重新编排并给予详细解答. 很多题目提供了多种解法并加以分析和备注,有利于学生理解数学知识蕴涵的数学思想,建构知识的内在联系. 本书还选取了一些教材之外的有代表性的习题,以拓宽知识面,也有利于夯实学习后续专业课的基础.
    本书可供高等院校数学各专业学生学习“数学分析”课程使用,也可作为考研学生的复习资料,还可作为“数学分析”课程教师的参考书.”

作者简介

  李傅山,曲阜师范大学数学科学学院教授,研究生导师,2005年在复旦大学获得理学博士学位。主要研究方向是偏微分方程。长期讲授《数学分析》、《偏微分方程》等课程,主讲数学类专业的考研辅导课和全国大学生数学竞赛辅导,编著出版《数学分析中的问题与方法》一部。

本书特色

  《数学分析习题课讲义3》的编写充分结合了作者近二十年讲授“数学分析”课程、参与考研辅导和全国大学生数学竞赛辅导的所积累经验。书中先对“数学分析”课程的知识点进行简明归纳,再对教材中的习题做系统分类,逐一进行解析。另外,还增加适量教材之外的有利于学生理解内容、掌握方法的题目。对相当一部分题目给出了多种解法或备注是本书的又一特色。本书可读性较强,对学习“数学分析”和数学各专业研究生考试具有较好的辅助、参考作用。

目录

第十六章 多元函数的极限与连续 1

S16.1 平面点集与多元函数 1

S16.2 二元函数的极限 10

S16.3 二元函数的连续性 21

总练习题 31

第十七章 多元函数微分学 37

S17.1 偏导数与全微分 37

S17.2 复合函数的可微性与偏导数公式 52

S17.3 方向导数与梯度 60

S17.4 高阶偏导数、全微分、Taylor 公式和无条件极值 65

总练习题 92

第十八章 隐函数定理及其应用 102

S18.1 隐函数 102

S18.2 隐函数组 111

S18.3 几何应用 127

S18.4 条件极值 136

总练习题 153

第十九章 含参量积分 170

S19.1 含参量正常积分 170

S19.2 含参量反常积分 188

S19.3 Euler 积分 205

总练习题 211

第二十章 曲线积分 219

S20.1 第一型曲线积分 219

S20.2 第二型曲线积分 225

总练习题 234

第二十一章 重积分 241

S21.1 二重积分的概念 241

S21.2 二重积分的累次积分法 245

S21.3 二重积分的换元积分法 255

S21.4 Green 公式及其应用 269

S21.5 三重积分 283

S21.6 重积分的应用 291

总练习题 301

第二十二章 曲面积分 321

S22.1 第一型曲面积分 321

S22.2 第二型曲面积分 326

S22.3 Gauss 公式与 Stokes 公式 342

S22.4 场论初步 361

总练习题 368

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《数学分析习题课讲义(3)/李傅山》
Article link:https://www.teccses.org/952407.html