技术教育社区
www.teccses.org

基于高斯过程的传感器融合(英文版)

封面

作者:冯仕民

页数:195页

出版社:科学出版社

出版日期:2017

ISBN:9787030548771

电子书格式:pdf/epub/txt

内容简介

提出了一种多速率传感器融合的新方法,用于用户匹配和位置稳定和延时缩减。我们用高斯过程的方法融合了微软Kinect传感器和可移动设备里面的惯性传感器。提出了一种基于高斯过程模型的多传感器融合框架,并且探究了如何使用这种模型来融合可移动惯性传感器和一个外部位置传感器设备。用这种新颖且改进了的高斯过程模型开发了两种应用,一是用户匹配与识别,二是在空间位置感知应用中提升用户交互表现,并提出这两种应用可以无缝地结合在一个空间关系交互系统中。

目录

Contents Preface Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Research Problems and Motivations 5 1.2.1 Research Problems 5 1.2.2 Research Motivations 6 1.3 Aims and Contributions 10 1.4 The Outline 11 Chapter 2 Context-aware Sensing and Multisensor Data Fusion 14 2.1 Context-aware Sensing 14 2.1.1 Location-aware Sensing 16 2.1.2 Positioning Technologies 22 2.1.3 Spatial Interaction 25 2.2 Human Motion Capture and Analysis 27 2.2.1 Human Motion 28 2.2.2 Human Motion Capture Systems 29 2.2.3 Human Motion Analysis 35 2.3 Multisensor Data Fusion 36 2.3.1 Introduction 36 2.3.2 Probabilistic Approaches 37 2.3.3 Bayesian Filters and Sensor Fusion 38 2.4 Gaussian Processes and Sensor Fusion 40 2.4.1 Gaussian Processes 41 2.4.2 Sensor Fusion with Gaussian Processes 45 2.5 Conclusions 45 Chapter 3 Sensor Fusion with Multi-rate Sensors-based Kalman Filter 47 3.1 Introduction 47 3.2 The Kalman Filter and Multi-rate Sensors-based Kalman Filter 493.2.1 Background 49 3.2.2 Sensor Fusion with Multi-rate Sensors-based Kalman Filter 50 3.3 System Overview 53 3.3.1 Sensor Noise Characteristics 53 3.3.2 The Coordinate Systems 53 3.3.3 The Multi-rate Sensors-based Fusion System 56 3.4 Inertial Sensor Fusion 58 3.4.1 Orientation Estimation 58 3.4.2 Experiment: Comparison of Acceleration Estimated with Kinect Sensor and Inertial Sensors 60 3.5 Experiment: Fusing Kinect Sensor and Inertial Sensors with Multi-rate Sensors-based Kalman Filter 68 3.5.1 Experimental Set-up 68 3.5.2 Experiment Design 68 3.5.3 Position Estimation 69 3.5.4 Velocity Estimation 72 3.5.5 Acceleration Estimation 73 3.5.6 Conclusion 74 3.6 Conclusions 74 Chapter 4 The Sensor Fusion System 76 4.1 Introduction 77 4.1.1 Hand Motion Tracking with Kinect Sensor and Inertial Sensors 78 4.1.2 Challenges 79 4.1.3 Applications 80 4.2 System Overview 81 4.2.1 Augmenting the Kinect System with SK7 82 4.2.2 Augmenting the Kinect System with a Mobile Phone 82 4.3 Gaussian Process Prior Model for Fusing Kinect Sensor and Inertial Sensors 84 4.3.1 Problem Statement for Dynamical System Modelling 84 4.3.2 Transformations of GP Priors and Multi-rate Sensor Fusion 89 4.4 Alternative View of the Sensor Fusion—Multi-rate Kalman Filter 97 4.5 Experiment 101 4.5.1 Experiment Design 1014.5.2 Experimental Method 102 4.5.3 Experimental Results 103 4.5.4 Conclusion 107 4.6 Conclusions 108 Chapter 5 Transformations of Gaussian Process Priors for User Matching 110 5.1 Introduction 110 5.2 Background 113 5.3 Fusing Kinect Sensor and Inertial Sensors for User Matching 114 5.3.1 Problem Statement for User Matching with GP Priors 115 5.3.2 Multi-rate Sensor Fusion for User Matching 116 5.4 User Matching System Overview 118 5.5 Simulation Experiment: Estimation of Position, Velocity and Acceleration with GP Priors 119 5.6 The User Matching Experiment I: Subtle Hand Movement 122 5.6.1 Experiment Design 122 5.6.2 Experimental Results 122 5.6.3 Summary of Subtle Movement Results 134 5.7 The User Matching Experiment II: Mobile Device in User’s Trouser Pocket 134 5.7.1 Experiment Design 134 5.7.2 Experimental Results 136 5.7.3 Summary of Device-in-pocket Results 141 5.8 The User Matching Experiment III: Walking with Mobile Device in the Hand 141 5.8.1 Experiment Design 141 5.8.2 Experimental Results 141 5.8.3 Summary of Walking Results 148 5.9 Discussions 148 5.10 Conclusions 150 Chapter 6 Experiment—User Performance Improvement in Sensor Fusion System 153 6.1 Introduction 153 6.2 Background 1556.2.1 Feedback Control System 155 6.2.2 Visual Feedback 156 6.3 Augmenting the Kinect System with Mobile Device in Spatially Aware Display 157 6.3.1 System Overview 157 6.3.2 Augmenting the Kinect System with a Mobile Device (N9) 158 6.4 Experiment: User Study—Trajectory-based Target Acquisition Task 162 6.4.1 Participants and Apparatus 162 6.4.2 Data Collection and Analysis 162 6.4.3 Experiment Design 163 6.4.4 Experimental Results 164 6.4.5 Conclusion 168 6.5 Conclusions 169 Chapter 7 Conclusions 171 7.1 Sensor Fusion with Multi-rate Sensors-based Kalman Filter 172 7.2 The Sensor Fusion System 173 7.3 First Application—User Matching and Identiˉcation 175 7.4 Second Application—Position Stabilisation and Lag Reduction 176 7.5 Combination of Two Applications in Proxemic Interaction 178 Appendix A Acronyms 180 References 181 Index 195

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《基于高斯过程的传感器融合(英文版)》
Article link:https://www.teccses.org/845103.html