
作者:辛克维奇
页数:624
出版社:世界图书出版公司
出版日期:2015
ISBN:9787510098499
电子书格式:pdf/epub/txt
内容简介
《有限元方法:固体力学和结构力学(第7版 英文版)》重点讲述了成功的结构分析和模拟所第一的核心知识和数学、分析工具,因此该书是研究生、科研工作者和工程师选择的。
作者简介
O.C.Zienkiewicz是有限元数值方法研究的先驱者之一,长期处于世界前沿,对现代数值计算中的有限元法作出了系统性和创造性的开拓和发展,在有限元法许多具方向性的重大进展上都作出了重要贡献。
目录
List of Tables
Preface
CHAPTER 1 General Problems in Solid Mechanics and
Nonlinearity
1.1 Introduction
1.2 Small deformation solid mechanics problems
1.2.1 Strong form of equation: Indicial notation
1.2.2 Matrix notation
1.2.3 Two-dimensional problems
1.3 Variational forms for nonlinear elasticity
1.4 Weak forms of governing equations
1.4.1 Weak form for equilibrium equation
1.5 Concluding remarks
References
CHAPTER 2 Galerkin Method of Approximation: Irreducible
and Mixed Forms
2.1 Introduction
2.2 Finite element approximation: Galerkin method
2.2.1 Displacement approximation
2.2.2 Derivatives
2.2.3 Strain-displacement equations
2.2.4 Weak form
2.2.5 Irreducible displacement method
2.3 Numerical integration: Quadrature
2.3.1 Volume integrals
2.3.2 Surface integrals
2.4 Nonlinear transient and steady-state problems
2.4.1 Explicit Newmark method
2.4.2 Implicit Newmark method
2.4.3 Generalized midpoint implicit form
2.5 Boundary conditions: Nonlinear problems
2.5.1 Displacement condition
2.5.2 Traction condition
2.5.3 Mixed displacement/traction condition
9.6 Mixed or irreducible forms
2.6.1 Deviatoric and mean stress and strain components
2.6.2 A three-field mixed method for general constitutive models
2.6.3 Local approximation ofp and 0
2.6.4 Continuous u-p approximation
2.7 Nonlinear quasi-harmonic field problems
2.8 Typical examples of transient nonlinear calculations
2.8.1 Transient heat conduction
2.8.2 Structural dynamics
2.8.3 Earthquake response of soil structures
2.9 Concluding remarks
References
CHAPTER 3 Solution of Nonlinear Algebraic Equations
3.1 Introduction
3.2 Iterative techniques
3.2.1 General remarks
3.2.2 Newton’s method
3.2.3 Modified Newton’s method
3.2.4 Incremental-secant or quasi-Newton methods
3.2.5 Line search procedures: Acceleration of convergence
3.2.6 “Softening” behavior and displacement control
3.2.7 Convergence criteria
3.3 General remarks: Incremental and rate methods
References
CHAPTER 4 Inelastic and Nonlinear Materials
4.1 Introduction
4.2 Tensor to matrix representation
4.3 Viscoelasticity: History dependence of deformation
4.3.1 Linear models for viscoelasticity
4.3.2 Isotropic models
4.3.3 Solution by analogies
4.4 Classical time-independent plasticity theory
4.4.1 Yield functions
4.4.2 Flow rule (normality principle)
4.4.3 Hardening/softening rules
4.4.4 Plastic stress-strain relations
4.5 Computation of stress increments
……















