
作者:周思中
页数:156
出版社:武汉大学出版社
出版日期:2014
ISBN:9787307145894
电子书格式:pdf/epub/txt
内容简介
本书共五章。第一章介绍了图的基础术语和参数概念。第二章给出了有关图的分数因子的一些性质。第三章介绍了分数可消去图。在后两章中给出了图的联结数与分数可消去图之间的关系,以及一个图是分数可消去图的若干充分条件。全书结构清晰,对图的分数因子理论作了进一步改进和完善。
本书特色
本书共五章。第一章介绍了图的基础术语和参数概念。第二章给出了有关图的分数因子的一些性质。第三章介绍了分数可消去图。在后两章中给出了图的联结数与分数可消去图之间的关系,以及一个图是分数可消去图的若干充分条件。全书结构清晰,对图的分数因子理论作了进一步改进和完善。
目录
preface
chapter 1 terminologies and graphic parameters
1.1 basic terminologies
1.2 graphic parameters
chapter 2 fractional factors
2.1 fractional/c-factors
2.2 fractional k-factors including any given edge
2.3 fractional (9, f)-factors with prescribed properties
chapter 3 fractional deleted graphs
3.1 fractional/c-deleted graphs
3.2 fractional (9, f)-deleted graphs
chapter 4 fractional (k, m)-deleted graphs
4.1 a criterion for fractional (k, m)-deleted graphs
4.2 degree conditions for fractional (k, m)-deleted graphs
4.3 neighborhood and fractional (k, m)-deleted graphs
4.4 binding number and fractional (k, m)-deleted graphs
4.5 toughness and fractional (k, m)-deleted graphs
chapter 5 fractional (g, f, m)-deleted graphs
5.1 preliminary and results
5.2 proof of main theorems
references
chapter 1 terminologies and graphic parameters
1.1 basic terminologies
1.2 graphic parameters
chapter 2 fractional factors
2.1 fractional/c-factors
2.2 fractional k-factors including any given edge
2.3 fractional (9, f)-factors with prescribed properties
chapter 3 fractional deleted graphs
3.1 fractional/c-deleted graphs
3.2 fractional (9, f)-deleted graphs
chapter 4 fractional (k, m)-deleted graphs
4.1 a criterion for fractional (k, m)-deleted graphs
4.2 degree conditions for fractional (k, m)-deleted graphs
4.3 neighborhood and fractional (k, m)-deleted graphs
4.4 binding number and fractional (k, m)-deleted graphs
4.5 toughness and fractional (k, m)-deleted graphs
chapter 5 fractional (g, f, m)-deleted graphs
5.1 preliminary and results
5.2 proof of main theorems
references



![实用完井工程 [Practical Well Completion Engineering]-技术教育社区](https://image12.bookschina.com/2016/20161209/B6648106.jpg)











