作者:樊华,陈伟建 著
出版社:清华大学出版社
出版日期:2025
ISBN:9787302680994
电子书格式:pdf/epub/txt
网盘下载地址:下载电子电路基础(英文版)
内容简介
“为了实现课程知识体系内在的贯通和平滑过渡,电子科技大学将电子信息类专业的主干课“模拟电路基础”和“电路分析”整合成“电子电路基础”课程,本书是该课程英文课堂的配套教材。第一部分主要讲述电路的模型及基本的电路定律,“电路分析”实际上是对电路的模型进行分析,学习基尔霍夫等基本的电路定律才能对电路模型进行正确的数学求解。叠加定理是线性电路的一个重要定理,也是后续基本放大电路交直流分析的重要理论依据,同时配合戴维南定理和诺顿定理,大大简化电路分析的难度。第二部分进入模拟电路的学习,基本放大电路的时域分析和频域分析是“模拟电路基础”的核心,也是后续研究生课程“模拟集成电路分析与设计”的重要铺垫,对于有志于从事集成电路芯片设计的学生而言,基本放大电路这部分知识是重中之重,同时需要配合仿真工具强化理解。第三部分主要讲解应用集成运算放大器的范例,通过集成运算放大器和反馈可以实现对数、指数运算电路和乘法、除法运算电路,低通、高通、带通和带阻滤波电路,学生可以自行选择商用集成运放芯片搭建运算或者滤波电路,以加强实践能力。
本书可作为电子信息类、自动化类、电气类等相关专业的英文课堂配套教材,也可供相关领域的工程技术人员参考。”
作者简介
樊华,电子科技大学教授,博士生导师。主讲本科生专业基础课“电路分析与电子线路”“模拟电路基础”“电子电路基础”,主讲研究生专业基础课“模拟集成电路分析与设计”, 近五年总计授课852学时,每年评教结果为五星(优秀),所授课程均为解决我国“缺芯”之痛打通人才培养“最后一公里”的集成电路重要理论基础课程。作为项目负责人主持8项教改项目,4项校级教改项目,以第一作者身份在《实验技术与管理》(清华大学主办)等发表教学研究论文21篇(SCI期刊2篇,EI国际会议10篇,核心期刊9篇)。2021年,参赛项目《三轴霍尔传感器芯片设计》在第一届全国博士后创新创业大赛全国总决赛中总分第一,荣获金奖。2022年,参赛项目获得广东省“众创杯”创业创新大赛之科技海归领航赛特等奖。
樊华,电子科技大学教授,博士生导师。主讲本科生专业基础课“电路分析与电子线路”“模拟电路基础”“电子电路基础”,主讲研究生专业基础课“模拟集成电路分析与设计”, 近五年总计授课852学时,每年评教结果为五星(优秀),所授课程均为解决我国“缺芯”之痛打通人才培养“最后一公里”的集成电路重要理论基础课程。作为项目负责人主持8项教改项目,4项校级教改项目,以第一作者身份在《实验技术与管理》(清华大学主办)等发表教学研究论文21篇(SCI期刊2篇,EI国际会议10篇,核心期刊9篇)。2021年,参赛项目《三轴霍尔传感器芯片设计》在第一届全国博士后创新创业大赛全国总决赛中总分第一,荣获金奖。2022年,参赛项目获得广东省“众创杯”创业创新大赛之科技海归领航赛特等奖。
陈伟建,电子科技大学教授、高级工程师。电子科技大学首届“我最喜爱的老师”。1978—1982年就读于上海交通大学。1982—1985年在中船432厂从事设计开发工作。1985—1988年就读于重庆大学。1988年至今在电子科技大学通信与信息工程学院从事教学科研工作,其间,1994—1996年任电子科技大学产业处副处长,1996—2003年任电子科技大学工厂厂长兼总工程师。承担信息论、电子电路两个系列多门研究生和本科生课程的教学工作,以及国家自然科学基金、国家重点实验室基金、国家及省部产学研重大专项等项目的科研工作,多种产品和工程的设计开发工作。获得国家级教学成果奖、部省级科技进步奖、国家级新产品开发奖,在国内外各种学术刊物上发表数十篇论文。
本书特色
(1) 帮助学生掌握电路的基本理论和基本分析方法,为学习后续课程准备必要的电路知识。
(2) 着重培养学生的创新思维与工程实践能力、抽象思维能力、分析计算能力和总结归纳能力。
(3) 提供大量典型、实用的设计案例,源自作者多年从事集成电路芯片设计的深厚积累。
(4) 新形态教材,配套资源丰富,包括教学大纲、PPT课件、配套习题和解答,请到出版社网站下载。
目录
Chapter 1Introduction
1.1History
1.2Overview
1.3Simulation Tool
Chapter 2Circuit Model
2.1Lumped Circuit
2.2Resistor and Its Circuit Model
2.2.1Resistor
2.2.2Circuit Model of Resistor
2.2.3Potentiometer and Circuit Model
2.2.4Switch and Its Circuit Model
2.2.5Generalization of Resistor Definition
2.3Power Source and Its Circuit Model
2.3.1Power Source
2.3.2Circuit Model of Power Source
2.4Inductor and Its Circuit Model
2.4.1Inductor
2.4.2Circuit Model of an Inductor
2.4.3Generalization of the Definition of Inductor
2.5Capacitor and Its Circuit Model
2.5.1Capacitor
2.5.2Capacitor Circuit Model
2.5.3Generalization of Capacitor Definition
2.6Diode and Its Circuit Model
2.6.1Diode
2.6.2Main Parameters of Diodes
2.6.3The Circuit Model of Diodes
2.6.4Zener Diode
2.6.5The Circuit Model of the Zener Diode
2.7Field睧ffect Transistor (FET) and Its Circuit Model
2.7.1Field睧ffect Transistor (FET)
2.7.2The Main Parameters of Enhanced Field睧ffect
Transistors
2.7.3Field睧ffect Transistor Circuit Model
2.8Bipolar Junction Transistor (BJT) and Its Circuit Model
2.8.1Bipolar Junction Transistor (BJT)
2.8.2Main Parameters of Transistor
2.8.3Circuit Model of Transistor
2.9Kirchhoff餾 Law
2.9.1Kirchhoff餾 Current Law
2.9.2Generalization of KCL
2.9.3Kirchhoff餾 Voltage Law
2.9.4Generalization of KVL
2.10Simulation Experiment
2.10.1Experimental Requirements and Purposes
2.10.2Diode Voltage睠urrent Characteristic Circuit
Problems
Chapter 3Circuit Analysis Methods
3.1Two Types of Constraints and Circuit Equations
3.1.1Two Types of Constraints
3.1.2Circuit Equations
3.2The Three睧lement Method for First睴rder Circuits
3.2.1First睴rder RC Circuit
3.2.2Properties of Exponent
3.3Superposition Theorem and Its Application
3.3.1Superposition Theorem
3.3.2Application of Superposition Theorem
3.4Network Equivalence with the Application of Thevenin餾
Theorem and Norton餾 Theorem
3.4.1Network Equivalence
3.4.2Thevenin餾 Theorem and Norton餾 Theorem
3.4.3Application of Thevenin餾 Theorem and Norton餾
Theorem
3.5Nodal Analysis Method
3.5.1Node Voltage
3.5.2Writing the Node Equation
最3.5.3Series RC Circuit with A Step Input
最3.5.4Series RC Circuit with Square Wave Input
3.6Phasor Model for Sinusoidal Steady睸tate Circuits
3.6.1Dynamic Circuits Driven by Sinusoidal Signals
3.6.2Sinusoidal Steady睸tate Circuits
3.6.3Phasor Representation of Sinusoidal Quantities
3.6.4Phasor Calculation of Sinusoidal Quantities
3.6.5Phasor Model of Sinusoidal Steady睸tate Circuit
3.7Phasor Analysis of Sinusoidal Steady睸tate Circuits
3.7.1The Fundamental Method for Phasor Analysis of Sinusoidal
Steady睸tate Circuits
3.7.2Application of Superposition Theorem in Sinusoidal
Steady睸tate Circuit Phasor Analysis
3.7.3Application of Thevenin/Norton Theorem in Phasor
Analysis of Sinusoidal Steady睸tate Circuits
3.7.4Node Analysis in Sinusoidal Steady睸tate Circuit Phasor
Analysis
3.8Frequency Characteristics of Sinusoidal Steady睸tate
Circuits
3.8.1Transfer Function and Frequency Characteristics of
Sinusoidal Steady睸tate Circuits
3.8.2First睴rder Low睵ass Characteristic
3.8.3First睴rder High睵ass Characteristic
3.9Simulation: Thevenin Equivalent Circuits and Norton Equivalent
Circuits
Problems
Chapter 4Basic Amplifier Circuits
4.1Performance Indicators of Amplifiers
4.1.1Amplification and Amplifiers
4.1.2Performance Indicators of Amplifier Circuit
4.2Common Source Amplifier Circuit
4.2.1Quiescent Operation Point
4.2.2Basic Performance
4.2.3Frequency Characteristic
4.3Common Drain Amplifier Circuit
4.3.1Quiescent Working Points
4.3.2Basic Performance
4.3.3Frequency characteristics
4.4Transistor Amplifier Circuit
4.4.1Common Emitter Amplifier Circuit
4.4.2Common Collector Amplifier Circuit
4.4.3Common Base Amplifier Circuit
4.4.4Summary of Equivalent Resistance
4.5Emitter Follower Simulation Experiments
4.5.1Experimental Requirements and Objectives
4.5.2Emitter Follower Circuits
Problem
Chapter 5Multi睸tage Amplifier Circuits and Operational Amplifiers
5.1Coupling Methods for Multi睸tage Amplifier Circuits
5.1.1Direct Coupling
5.1.2Resistance睠apacitance (RC) Coupling
5.1.3Transformer Coupling
5.1.4Optoelectronic Coupling
5.2Resistance睠apacitance (RC) Coupling Multi睸tage Amplifier
Circuits
5.2.1Quiescent Operating Point
5.2.2Basic Performance
5.2.3Frequency Characteristic
5.3Multi睸tage Amplifier Circuit Simulation
5.3.1Experimental Requirements and Objectives
5.3.2Experimental Circuits
5.3.3Experimental Procedures
5.3.4Conclusion
Problem
Chapter 6Operational Amplifiers
6.1Integrated Operational Amplifiers
6.1.1Introduction to Integrated Operational Amplifiers
6.1.2Structural Characteristics of Integrated Operational
6.1.3The Composition of Integrated Operational Amplifier
Circuits and Functions
6.1.4Voltage Transfer Characteristics of Integrated Operational
Amplifier
6.2Mirror Current Source
6.2.1Transistor Mirror Current Source
6.2.2Field Effect Transistor Mirror Current Source
6.2.3Multi睠urrent Source Circuit
6.2.4Active Load Common Emitter Amplifier Circuit
6.3Differential Amplifier Circuit
6.3.1Long睺ailed Differential Amplifier Circuit
6.3.2Current Source Differential Amplifier Circuit
6.3.3Active Load Current Source Differential Amplifier
Circuit
6.3.4MOSFET Voltage Differential Amplifier Circuit
6.4Complementary Output Circuit
6.4.1Basic Circuit
6.4.2Complementary Output Circuit for Eliminating Crossover
Distortion
6.4.3MOSFET Class AB Output Stage Circuit
6.5Integrated Operational Amplifier
6.5.1Three Stage CMOS Operational Amplifier
6.5.2Main Performance Indicators of Integrated Operational
Amplifier
6.5.3Low瞗requency Equivalent Circuit of Integrated Operational
Amplifier
Problems
Chapter 7Negative Feedback Amplifier Circuit
7.1Concept of Negative Feedback Amplifier Circuit
7.1.1Judgment of Feedback
7.1.2The Four Configurations of Negative Feedback Amplifier
Circuit
7.2Deep Negative Feedback
7.2.1Feedback Network Model and Feedback Factor
7.2.2The Voltage Gain of a Deep Negative Feedback Amplifier
Circuit
7.3The Impact of Negative Feedback on Other Performance
Aspects of the Amplifier Circuit
7.3.1Changing the Input Impedance
7.3.2Changing the Output Impedance
7.3.3Broadening the Bandwidth
7.4Negative Feedback Amplifier Circuit Simulation Experiment
7.4.1Experiment Requirements and Objectives
7.4.2Experimental Principle
7.4.3Experimental Circuit
7.4.4Experimental Procedures
7.4.5Conclusion
7.4.6Discussion of Issues
7.5Summary
Problem
Chapter 8Operational Circuits and Filtering Circuits
8.1Operational Circuits
8.1.1Circuit Components
8.1.2Addition and Subtraction Operational Circuits
8.1.3Multiplication Operation Circuit
8.1.4Integral Operational Circuit and Differential Operational
Circuit
8.2Filtering Circuits
8.3Integrated Operational Amplifier Application Simulation
Experiment
8.3.1Operational Circuit Simulation Experiment
8.3.2Active Filter Circuit Simulation Experiment
Problem
Chapter 9Waveform Generating Circuit and Signal Conversion Circuit
9.1Sinusoidal Oscillating Circuit
9.1.1RC Sinusoidal Wave Generating Circuit
9.1.2LC Sinusoidal Wave Generating Circuit
9.2Non睸inusoidal Wave Generator
9.2.1Comparator Circuit
9.2.2Square Wave Generation Circuit
9.2.3Triangular Wave Generation Circuit
9.2.4Waveform Conversion Circuit睺riangular Wave Sine Wave
Conversion Circuit
9.2.5Function Generator
9.3Voltage瞭o睩requency Conversion Circuit (Voltage睠ontrolled
Oscillator Circuit)
9.3.1Overview
9.3.2Waveform Analysis
9.4Simulation Experiment
9.4.1Experiment Requirements and Objectives
9.4.2Simulation Experiment for Sine Wave Oscillator
9.4.3Square Wave Generation Circuit
9.4.4Triangle Wave Generation Circuit
Problem
Chapter 10AC/DC Power Sources
10.1Overview
10.1.1Performance Parameters of AC/DC Power Supply
10.1.2Composition of AC/DC Power Supply
10.2Rectifier Circuits and Filter Circuits
10.2.1Rectifier Circuit
10.2.2Filter Circuit
10.3Voltage Regulator Circuit
10.4Series Regulator Circuits and Three睺erminal Voltage
Regulators
10.4.1Basic Series Regulator Circuits
10.4.2Series Voltage Regulator Circuit with Amplification
Element
10.4.3Integrated Three睺erminal Regulators
10.5Single睵hase Rectifier Filter Circuit Simulation Experiment
Problem
参考文献
前言