
作者:(印)帕德马纳班
页数:700
出版社:北京大学出版社
出版日期:2013
ISBN:9787301227879
电子书格式:pdf/epub/txt
内容简介
本书覆盖了当代引力理论的方方面面。在基础部分,介绍基本的公式之后,还对引力理论在球对称时空、黑洞、引力波和宇宙学领域的应用做了介绍。在前沿部分,本书讨论了宇宙微扰论、弯曲时空量子场论和广义相对论的Hamiltonian结构等问题。本书适合引力、理论物理乃至所有物理领域的研究者和研究生阅读。
本书特色
帕德马纳班编著的这本《引力–基础与前沿》覆盖了当代引力理论的方方面面。在基础部分,本书首先介绍了引力理论的一些基本的概念、方法和公式。之后,本书进而对引力理论在球对称时空、黑洞、引力波和宇宙学领域的应用做了系统而深入的介绍。在前沿部分,本书讨论了宇宙微扰论、弯曲时空量子场论和广义相对论的Hamiltonian结构等当前很受关注的重要问题。本书适合理论物理所有领域的研究者和研究生阅读。
目录
list of exercises
list of projects
preface
how to use this book
1 special relativity
1.1 introduction
1.2 the principles of special relativity
1.3 transformation of coordinates and velocities
1.3.1 lorentz transformation
1.3.2 transformation of velocities
1.3.3 lorentz boost in an arbitrary direction
1.4 four-vectors
1.4.1 four-velocity and acceleration
1.5 tensors
1.6 tensors as geometrical objects
1.7 volume and surface integrals in four dimensions
1.8 particle dynamics
1.9 the distribution function and its moments
1.10 the lorentz group and pauli matrices
2 scalar and electromagnetic fields in special relativity
2.1 introduction
2.2 external fields of force
2.3 classical scalar field
2.3.1 dynamics of a particle interacting with a scalarfield
2.3.2 action and dynamics of the scalar field
2.3.3 energy-momentum tensor for the scalar field
2.3.4 free field and the wave solutions
2.3.5 why does the scalar field lead to an attractiveforce?
2.4 electromagnetic field
2.4.1 charged particle in an electromagnetic field
2.4.2 lorentz transformation of electric and magneticfields
2.4.3 current vector
2.5 motion in the coulomb field
2.6 motion in a constant electric field
2.7 action principle for the vector field
2.8 maxwell’s equations
2.9 energy and momentum of the electromagnetic field
2.10 radiation from an accelerated charge
2.11 larmor formula and radiation reaction
3 gravity and spaeetime geometry: the inescapable connection
3.1 introduction
3.2 field theoretic approaches to gravity
3.3 gravity as a scalar field
3.4 second rank tensor theory of gravity
3.5 the principle of equivalence and the geometricaldescription of gravity
3.5.1 uniformly accelerated observer
3.5.2 gravity and the flow of time
4 metric tensor, geodesics and covariant derivative
4.1 introduction
4.2 metric tensor and gravity
4.3 tensor algebra in curved spacetime
4.4 volume and surface integrals
4.5 geodesic curves
4.5.1 properties of geodesic curves
4.5.2 affine parameter and null geodesics
4.6 covariant derivative
4.6.1 geometrical interpretation of the covariantderivative
4.6.2 manipulation of covariant derivatives
4.7 parallel transport
4.8 lie transport and killing vectors
4.9 fermi-walker transport
5 curvature of spaeetime
5.1 introduction
5.2 three perspectives on the spacetimecurvature
5.2.1 parallel transport around a closed curve
5.2.2 non-commutativity of covariant derivatives
……















