
作者:洪银胜 等
页数:129
出版社:合肥工业大学出版社
ISBN:9787565064449
电子书格式:pdf/epub/txt
内容简介
本书是针对《高等数学》教材编写的辅导用书,配合高等数学课程教学使用,旨在为学生自主学习提供相关练习。
本书按配套教材的章节顺序编写。书中每节由“知识点归纳”“典型例题和“同步训练,,三部分构成。其中,“知识点归纳”对每一节的知识点进行简明扼要的归纳;“典型例题”精挑细选了本节的重点、难点问题,并对这些问题进行分析和解答,助力学生自主学习;“同步训练”配备了难易程度适当的训练题,方便学生在掌握基础知识的前提下巩固学习效果,提高学生解决问题的综合能力。本书在编写过程中,力求结构严谨、逻辑清晰、讲解简练,旨在帮助学生复习总结,可供有不同学习需求的学生进行检测。
目录
章 函数的极限与连续
节 函数概述
第二节 极限的概念
第三节 极限的运算
第四节 两个重要极限
第五节 无穷小与无穷大
第六节 函数的连续性
单元测试题
第二章 导数与微分
节 导数概述
第二节 函数和、差、积、商的求导法则
第三节 反函数的导数复合函数的求导法则
第四节 隐函数的求导以及参数方程确定的函数的导数
第五节 高阶导数
第六节 函数的微分
单元测试题
第三章 导数的应用
节 中值定理
第二节 洛必达法则
第三节 函数的单调性与极值
第四节 函数的 值和 小值
第五节 函数图像的凹凸性与拐点、函数图像的描绘
第六节 曲线的曲率
单元测试题
第四章 不定积分
节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
单元测试题
第五章 定积分及其应用
节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元积分法和分部积分法
第四节 无限区间上的广义积分
第五节 定积分的应用举例
单元测试题
第六章 微分方程
节 微分方程的基本概念
第二节 可分离变量一阶微分方程
第三节 一阶线性微分方程
第四节 二阶常系数线性微分方程
单元测试题
参考文献
节 函数概述
第二节 极限的概念
第三节 极限的运算
第四节 两个重要极限
第五节 无穷小与无穷大
第六节 函数的连续性
单元测试题
第二章 导数与微分
节 导数概述
第二节 函数和、差、积、商的求导法则
第三节 反函数的导数复合函数的求导法则
第四节 隐函数的求导以及参数方程确定的函数的导数
第五节 高阶导数
第六节 函数的微分
单元测试题
第三章 导数的应用
节 中值定理
第二节 洛必达法则
第三节 函数的单调性与极值
第四节 函数的 值和 小值
第五节 函数图像的凹凸性与拐点、函数图像的描绘
第六节 曲线的曲率
单元测试题
第四章 不定积分
节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
单元测试题
第五章 定积分及其应用
节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元积分法和分部积分法
第四节 无限区间上的广义积分
第五节 定积分的应用举例
单元测试题
第六章 微分方程
节 微分方程的基本概念
第二节 可分离变量一阶微分方程
第三节 一阶线性微分方程
第四节 二阶常系数线性微分方程
单元测试题
参考文献














