技术教育社区
www.teccses.org

数学之美

封面

作者:袁少良

页数:276

出版社:科学技术文献出版社

出版日期:2023

ISBN:9787523503935

电子书格式:pdf/epub/txt

内容简介

本书从美学的最基本问题谈起:什么是美?人为什么需要美?如何审美?美的形式有哪些?进而试图阐释数学的本质,数学的重要意义以及数学美的各种形式。并选取了 16 个能够展现数学美的课题,详细地阐述了每个课题从问题的萌芽、发展到学科的成熟。希望能够以此说明数学美的存在,让读者能够感受到数学的美。

作者简介

黄朝凌,湖北文理学院数学与统计学院副教授。在 外学术期刊发表学术论文 20 余篇,主持参与完成各类项目 8 项。翻译出版 1 本数学史著作,出版 1 本学术著作。美国数学会《数学评论》评论员。

袁力,副教授,汉江师范学院数学与计算机科学学院副院长。

王丽丽,广东省外语艺术职业学院教师。

本书特色

本书从美学的基本问题谈起:什么是美?人为什么需要美?如何审美?美的形式有哪些?进而试图阐释数学的本质,数学的重要意义以及数学美的各种形式。并选取了 16 个能够展现数学美的课题,详细地阐述了每个课题从问题的萌芽、发展到学科的成熟。希望能够以此说明数学美的存在,让读者能够感受到数学的美。

目录

第一讲美学概论与数学之美003
第二讲欧拉公式055
第三讲椭圆、摆线、心形线与解析几何063
第四讲七桥问题与拓扑081
第五讲最速降线与泛函分析095
第六讲群与对称105
第七讲从科赫曲线到分形几何123
第八讲三角学与傅里叶级数135
第九讲有限与无限155
第十讲田忌赛马与博弈论169
第十一讲韩信点兵与中国剩余定理181
第十二讲费马最后猜想与代数数论189
第十三讲三角形的内角和与非欧几何199
第十四讲高斯与数列209
第十五讲贾宪三角与组合数学229
第十六讲韦达定理与多项式241
第十七讲从《几何原本》到公理化,再到范畴论255

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《数学之美》
Article link:https://www.teccses.org/1508171.html