
作者:(英)汤姆·兰卡斯,斯蒂芬·布伦德尔
页数:512
出版社:世界图书出版公司
出版日期:2023
ISBN:9787519296032
电子书格式:pdf/epub/txt
内容简介
量子场理论可以说是迄今为止最深远、好看丽的物理理论,它的各个方面比任何其他物理理论都要得到更严格的测试和更准确的验证。不幸的是,这门课因难度大而臭名昭著,在一系列针对专业人士的厚重教材中,数学晦涩难懂,还有一种奇特的图表语言。但是,量子场论太重要了,太吸引人了,不能只局限于专业人士。这本关于量子场论的书也因此与众不同。它是由实验物理学家写的,旨在为感兴趣的业余爱好者提供从本科物理到量子场理论的桥梁,针对的是有天赋的业余爱好者,书中使用了许多习题、图表,配有仔细的物理解释,可以让读者理解接近不同的、量子场理论提供的物理世界。
作者简介
汤姆·兰卡斯特(Tom Lancaster),曾是牛津大学物理学研究员,2012 年加入杜伦大学,目前是物理系和材料物理中心的教授。他曾担任国际μ子光谱学会主席,与斯蒂芬·布伦德尔(Stephen J. Blundell)等人合著有Muon Spectroscopy: An Introduction一书。
斯蒂芬·布伦德尔(Stephen J. Blundell),牛津大学物理系教授,并曾担任凝聚态物理的主任,他还是牛津大学曼斯菲尔德学院董事。他另著有Concepts in Thermal Physics,Magnetism in Condensed Matter,Superconductivity: A Very Short Introduction,Magnetism: A Very Short Introduction等书。
本书特色
正如作者在序言中所说,他们想象中此书的读者是一位不专门从事量子场论研究的“业余爱好者(amateur)”,其水平应该介于物理小白与量子场论专业人士之间,所以研习本书需要一定的本科物理知识。尽管作者把可能需要用到的物理基础都交代了,但缺乏物理基础的话,会对学习量子场论造成一定的困难。纵观众多量子场论教材或专著,本书可以称得上是极适合初学者自学的一本——兼顾了深度与广度,适合各个方向、各个阶段的学者阅读,故将书名译为《量子场论自学教程》。
建议与Michele Maggiore所著的《量子场论现代导论》(9787519296025),Mark Srednicki所著的《量子 场论》(9787510005749),Michael E. Peskin 和Dan V. Schroeder所著的《量子场论导论》 (9787519245481)参照研读,更深入学习可参阅诺奖得主Steven Weinberg的《量子场论》三卷。
目录
OvertureThe Universe as a set of harmonic oscillators
Lagrangians
Simple harmonic oscillators
Occupation number representation
Making second quantization workWriting down Lagrangians
Continuous systems
A first stab at relativistic quantum mechanics
Examples of Lagrangians, or how to write down a theoryIII. The need for quantum fieldsThe passage of time
Quantum mechanical transformations
Symmetry
Canonical quantization of fields
Examples of canonical quantization
Fields with many components and massive electromagnetism
Gauge fields and gauge theory
Discrete transformationsPropagators and perturbations
Ways of doing quantum mechanics: propagators and Green’s functions
Propagators and Fields
The S-matrix
Expanding the S-matrix: Feynman diagrams
Scattering theoryInterlude: wisdom from statistical physics
Statistical physics: a crash course
The generating functional for fieldsPath Integrals
Path Integrals: I said to him, “You’re crazy”
Field Integrals
Statistical field theory
Broken symmetry
Coherent states
Grassmann numbers: coherent states and the path integral for fermionsVII. Topological ideasTopological objects
Topological field theoryVIII. Renormalization: taming the infiniteRenormalization, quasiparticles and the Fermi surface
Renormalization: the problem and its solution
Renormalization in action: propagators and Feynman diagrams
The renormalization group
Ferromagnetism: a renormalization group tutorialPutting a spin on QFT
The Dirac equation
How to transform a spinor
The quantum Dirac field
A rough guide to quantum electrodynamics
QED scattering: three famous cross sections
The renormalization of QED and two great resultsSome applications from the world of condensed matter
Superfluids
The many-body problem and the metal
Superconductors
The fractional quantum Hall fluidSome applications from the world of particle physics
Non-abelian gauge theory
The Weinberg-Salam model
Majorana fermions
Magnetic monopoles
Instantons, tunnelling and the end of the worldAppendix A. Further reading
Appendix B. Useful complex analysis















