技术教育社区
www.teccses.org

面向工程师的实用机器学习和AI

封面

作者:(美)杰夫·普洛西(Jeff Prosi

页数:20,400页

出版社:东南大学出版社

出版日期:2023

ISBN:9787576606577

电子书格式:pdf/epub/txt

内容简介

许多AI入门指南可以说都是变相的微积分书籍,但这本书基本上避开了数学。作者Jeff Prosise帮助工程师和软件开发人员建立了对AI的直观理解,以解决商业问题。需要创建一个系统来检测雨林中非法砍伐的声音、分析文本的情感或预测旋转机械的早期故障?这本实践用书将教你把AI和机器学习应用于职场工作所需的技能。书中的示例和插图来自于Prosise在全球多家公司和研究机构教授的AI和机器学习课程。不说废话,也没有可怕的公式——纯粹就是写给工程师和软件开发人员的快速入门,并附有实际操作的例子。本书将帮助你:·学习什么是机器学习和深度学习及其用途·理解流行的机器学习算法原理及其应用场景·使用Scikit-Learn在Python中构建机器学习模型,使用Keras和TensorFlow构建神经网络·训练回归模型以及二元和多元分类模型并给其评分·构建面部识别模型和目标检测模型·构建能够响应自然语言查询并将文本翻译成其他语言的语言模型·使用认知服务将AI融入你编写的应用程序中

作者简介

杰夫·普洛西(Jeff Prosise)是一名工程师,热衷于向工程师和软件开发人员介绍AI 和机器学习的种种神奇之处。作为Wintellect的联合创始人,他已经在微软培训了数千名开发人员,并在一些第一最大规模的软件会议上发表过演讲。此外,Jeff在橡树岭国家实验室和劳伦斯利弗莫尔国家实验室从事高功率激光系统和聚变能源研究。他目前担任Atmosera的首席学习官,帮助客户将AI融入他们的产品。

目录

Foreword

Preface

Part I. Machine Learning with Scikit-Learn

1. Machine Learning

What Is Machine Learning?

Machine Learning Versus Artificial Intelligence

Supervised Versus Unsupervised Learning

Unsupervised Learning with k-Means Clustering

Applying k-Means Clustering to Customer Data

Segmenting Customers Using More Than Two Dimensions

Supervised Learning

k-Nearest Neighbors

Using k-Nearest Neighbors to Classify Flowers

Summary

2. Regression Models

Linear Regression

Decision Trees

Random Forests

Gradient-Boosting Machines

Support Vector Machines

Accuracy Measures for Regression Models

Using Regression to Predict Taxi Fares

Summary

3. Classification Models

Logistic Regression

Accuracy Measures for Classification Models

Categorical Data

Binary Classification

Classifying Passengers Who Sailed on the Titanic

Detecting Credit Card Fraud

Multiclass Classification

Building a Digit Recognition Model

Summary

4. Text Classification

Preparing Text for Classification

Sentiment Analysis

Naive Bayes

Spam Filtering

Recommender Systems

Cosine Similarity

Building a Movie Recommendation System

Summary

5. Support Vector Machines

How Support Vector Machines Work

Kernels

Kernel Tricks

Hyperparameter Tuning

Data Normalization

Pipelining

Using SVMs for Facial Recognition

Summary

6. Principal Component Analysis

Understanding Principal Component Analysis

Filtering Noise

Anonymizing Data

Visualizing High-Dimensional Data

Anomaly Detection

Using PCA to Detect Credit Card Fraud

Using PCA to Predict Bearing Failure

Multivariate Anomaly Detection

Summary

7. Operationalizing Machine Learning Models

Consuming a Python Model from a Python Client

Versioning Pickle Files

Consuming a Python Model from a C# Client

Containerizing a Machine Learning Model

Using ONNX to Bridge the Language Gap

Building ML Models in C# with ML.NET

Sentiment Analysis with ML.NET

Saving and Loading ML.NET Models

Adding Machine Learning Capabilities to Excel

Summary

Part II. Deep Learning with Keras and TensorFlow

8. Deep Learning

Understanding Neural Networks

Training Neural Networks

Summary

9. Neural Networks

Building Neural Networks with Keras and TensorFlow

Sizing a Neural Network

Using a Neural Network to Predict Taxi Fares

Binary Classification with Neural Networks

Making Predictions

Training a Neural Network to Detect Credit Card Fraud

Multiclass Classification with Neural Networks

Training a Neural Network to Recognize Faces

Dropout

Saving and Loading Models

Keras Callbacks

Summary

10. Image Classification with Convolutional Neural Networks

Understanding CNNs

Using Keras and TensorFlow to Build CNNs

Training a CNN to Recognize Arctic Wildlife

Pretrained CNNs

Using ResNet50V2 to Classify Images

Transfer Learning

Using Transfer Learning to Identify Arctic Wildlife

Data Augmentation

Image Augmentation with ImageDataGenerator

Image Augmentation with Augmentation Layers

Applying Image Augmentation to Arctic Wildlife

Global Pooling

Audio Classification with CNNs

Summary

11. Face Detection and Recognition

Face Detection

Face Detection with Viola-Jones

Using the OpenCV Implementation of Viola-Jones

Face Detection with Convolutional Neural Networks

Extracting Faces from Photos

Facial Recognition

Applying Transfer Learning to Facial Recognition

Boosting Transfer Learning with Task-Specific Weights

ArcFace

Putting It All Together: Detecting and Recognizing Faces in Photos

Handling Unknow

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《面向工程师的实用机器学习和AI》
Article link:https://www.teccses.org/1464439.html