技术教育社区
www.teccses.org

Scikit-Learn、Keras和TensorFlow的机器学习实用指南 第3版(影印版)

封面

作者:AurélienGéron

页数:834

出版社:东南大学出版社

出版日期:2023

ISBN:9787576605945

电子书格式:pdf/epub/txt

内容简介

通过一系列近期新的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、最小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。在更新的第3版中,作者Aurélien Géron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。

作者简介

奥雷利安·吉翁是一名机器学习顾问。作为一名前Google职员,在2013至2016年间,他领导了YouTube视频分类团队。在2002至2012年间,他是法国主要的无线ISP Wifirst的创始人和CT0,在2001年他还是Polyconseil的创始人和CT0,这家公司现在管理着电动汽车共享服务Autolib。

目录

Preface

Part Ⅰ.The Fundamentals of Machine Learning

1.TheMachine Learning Landscape

What Is Machine Learning

Whr Use Machine Learning

Examples of Applications

Types of Machine Learning Systems

Training Supervision

Batch Versus Online Learning

Instance Based Versus Model Based Learning

Main Challenges of Machine Learning

Insufficient Quantity of Training Data

NonrepresentatiVe Training Data

Poor-Quality Data

Irrelevant Features

Overfitting the Training Data

Underfitting the Training Data

Stepping Back

Testing and Validating

Hyperparameter Tuning and Model Selection

Data Mismatch

Exercises

2.End-to-End Machine Learning Project

Working with Real Data

Look at the Big Picture

Frame the Problem

Select a Performance Measure

Check the Assumptions

Get the Data

Running the Code Examples Using Google Colab

Saving Your Code Changes and Your Data

The Power and Danger of Interactivity

Book Code Versus Notebook Code

Download the Data

Take a Quick Look at the Data Structure

Create a 11est Set

Explore and Visualize the Data to Gain Insights

Visualizing Geographical Data

Look for Correlations

Experiment with Attribute Combinations

Prepare the Data for Machine Learning Algorithms

Clean the Data

Handling Text and Categorical Attributes

Feature Scaling and Transformation

Custom Transformers

Transformation Pipelines

Select and Train a Model

Train and Evaluate on the Training Set

Better Evaluation Using Cross-Validation

Fine-Tune Your Model

Grid Search

Randomized Search

Ensemble Methods

Analyzing the Best Models and Their Errors

Evaluate Your System on the Test Set

Launch,Monitor,and Maintain Your System

TryItout

Exercises

3.Classification

MNIST

Training a Binary Classifier

Performance Measures

Measuring Accuracy Using Cross-Validation

Confusion Matrices

Precision and Recall

The Precision/Recall Trade-off

The ROC Curve

Multiclass Classification

Error Analysis

Multilabel Classification

Multioutput Classification

Exercises

……

Part Ⅱ Neural Networks and Deep Learning

A.Machine Learning Project Checklist

B.Autodiff

C.SpecialData Structures

D.TensorFIowGraphs

lndex

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《Scikit-Learn、Keras和TensorFlow的机器学习实用指南 第3版(影印版)》
Article link:https://www.teccses.org/1462600.html