技术教育社区
www.teccses.org

数据科学中的实用线性代数

封面

作者:(荷)迈克·X.科恩(Mike X Co

页数:311页

出版社:东南大学出版社

出版日期:2023

ISBN:9787576605884

电子书格式:pdf/epub/txt

内容简介

如果你想从事计算或技术领域的工作,理解线性代数是少不了的。线性代数的研究对象是矩阵及其运算,是几乎所有计算机算法和分析的数学基础。但它在几十年前的教科书中的呈现方式与专业人员如今用来解决现实世界问题的方式有很大不同。这本来自Mike X Cohen的实用指南讲授了以Python实现的线性代数的核心概念,包括如何在数据科学、机器学习、深度学习、计算模拟和生物医学数据处理应用中使用它们。有了这本书,理解、实现和适应繁多的现代分析方法和算法将不再是问题。

作者简介

迈克·X.科恩是荷兰唐德斯研究所(拉德堡德大学医学中心)的神经科学副教授。他在科学编程、数据分析、统计学和相关主题的教学方面拥有20多年的经验,并且已经创作了多门在线课程和教材。Mike身上有一种冷幽默感,喜欢紫色的东西。

目录

Preface

1. Introduction

What Is Linear Algebra and Why Learn It

About This Book

Prerequisites

Math

Attitude

Coding

Mathematical Proofs Versus Intuition from Coding

Code, Printed in the Book and Downloadable Online

Code Exercises

How to Use This Book (for Teachers and Self Learners)

2. Vectors, Part 1

Creating and Visualizing Vectors in NumPy

Geometry of Vectors

Operations on Vectors

Adding Two Vectors

Geometry of Vector Addition and Subtraction

Vector-Scalar Multiplication

Scalar-Vector Addition

Transpose

Vector Broadcasting in Python

Vector Magnitude and Unit Vectors

The Vector Dot Product

The Dot Product Is Distributive

Geometry of the Dot Product

Other Vector Multiplications

Hadamard Multiplication

Outer Product

Cross and Triple Products

Orthogonal Vector Decomposition

Summary

Code Exercises

3. Vectors, Part 2

Vector Sets

Linear Weighted Combination

Linear Independence

The Math of Linear Independence

Independence and the Zeros Vector

Subspace and Span

Basis

Definition of Basis

Summary

Code Exercises

4. Vector Applications

Correlation and Cosine Similarity

Time Series Filtering and Feature Detection

k-Means Clustering

Code Exercises

Correlation Exercises

Filtering and Feature Detection Exercises

k-Means Exercises

5. Matrices, Part 1

Creating and Visualizing Matrices in NumPy

Visualizing, Indexing, and Slicing Matrices

Special Matrices

Matrix Math: Addition, Scalar Multiplication, Hadamard Multiplication

Addition and Subtraction

“Shifting” a Matrix

Scalar and Hadamard Multiplications

Standard Matrix Multiplication

Rules for Matrix Multiplication Validity

Matrix Multiplication

Matrix-Vector Multiplication

Matrix Operations: Transpose

……

6. Matrices, Part 2

7. Matrix Applications

8. Matrix Inverse

9. Orthogonal Matrices and QR Decomposition

10. Row Reduction and LU Decomposition

11. General Linear Models and Least Squares

12. Least Squares Applications

13. Eigendecomposition

14. Singular Value Decomposition

15. Eigendecomposition and SVD Applications

16. Python Tutorial

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《数据科学中的实用线性代数》
Article link:https://www.teccses.org/1454779.html