
作者:霍正洋
页数:188
出版社:清华大学出版社
出版日期:2022
ISBN:9787302617075
电子书格式:pdf/epub/txt
内容简介
《再生水纳米线电穿孔消毒技术研究(英文版)》基于多孔电极内部过滤处理模式开发了纳米线电穿孔消毒技术,可利用纳米线很好强电场实现在极低电压下对再生水中微生物的高效灭活。内容包括:1. 开发内部过滤纳米线电穿孔消毒技术,实现低电压安全消毒;2. 揭示纳米线电穿孔消毒技术可抑制灭活细菌复活的重要规律;3. 发现采用高频交流供电(10E6 Hz)模式可有效延长电极使用寿命。研究工作解决了现有消毒技术效率低、微生物易复活、消毒副产物多等难题,具有重要的理论意义和应用价值。
《再生水纳米线电穿孔消毒技术研究(英文版)》可供高等院校环境工程、市政工程、电化学等专业的研究人员使用,也可供相关领域的工程技术人员参考。
作者简介
霍正洋,清华大学环境学院工学博士。现受Korea research fellowship资助于韩国成均馆大学先进材料科学与工程学院任研究教授。清华大学优秀博士毕业生。于高水平SCI期刊发表论文20余篇。研究领域:纳米材料在环境中应用,基于纳米发电机新型环境净化技术,高效消毒技术,再生水生物风险评价与控制。
本书特色
《再生水纳米线电穿孔消毒技术研究(英文版)》研究工作解决了现有消毒技术效率低、微生物易复活、消毒副产物多等难题,具有重要的理论意义和应用价值。
目录
Chapter 1Introduction
1.1Research background
1.1.1Significance of wastewater reclamation
and reuse
1.1.2Necessity of wastewater reclamation
and reuse
1.1.3Challenges of the existing disinfection
technology
1.2Electroporation disinfection
1.2.1Electroporation for biomedical application
1.2.2Electroporation for water disinfection
1.3Current research status of novel electroporation
disinfection
1.3.1Nanowire瞐ssisted electroporation for water
disinfection
1.3.2Current reactor for nanowire瞐ssisted
electroporation disinfection
1.3.3Methods for in瞫itu nanowire fabrication
1.3.4Impact of the nanowire morphology on
electroporation disinfection
1.3.5Nanomaterial strengthening method and electrode
lifetime improvement method
1.3.6Treatment efficiency of nanomaterial瞖nabled
disinfection technology for reclaimed
wastewater
1.4Research topics to be further investigated
1.5Research objective and content
1.5.1Research objective
1.5.2Research content
1.5.3Research roadmap
Chapter 2Development of nanowire瞞odified electrodes and investigation
of the microbial inactivation performance
2.1Research background
2.2Experimental materials and methods
2.2.1Experimental reagents
2.2.2CuO nanowire瞞odified copper foam electrodes
fabrication and disinfection device
construction
2.2.3Characterization of CuO nanowire瞞odified
copper foam electrodes
2.2.4Microbes and water samples used in
experiments
2.2.5Nanowire瞐ssisted electroporation for microbial
disinfection
2.2.6Bacterial storage after nanowire瞐ssisted
electroporation disinfection
2.2.7Free chlorine detection and current detection
during nanowire瞐ssisted electroporation
disinfection
2.2.8Copper ion concentration detection
2.2.9Bacterial morphology analysis
2.2.10Bacterial staining experiments
2.3Fabrication of CuO nanowire瞞odified copper
foam electrodes
2.4Disinfection efficiency of CuO nanowire瞞odified copper
foam electrodes
2.4.1Disinfection efficiency of E.coli.
2.4.2Disinfection efficiency of E. faecalis, B.subtilis,
and secondary effluent from municipal wastewater
treatment plants
2.4.3Current fluctuations and free chlorine generation
during the disinfection process
2.5Bacterial inactivation mechanisms of nanowire瞐ssisted
electroporation disinfection
2.5.1Cell morphology analysis
2.5.2Bacterial staining analysis
2.6Bacterial population fluctuations during the storage
process after disinfection
2.6.1Bacterial population fluctuations during the
storage process
2.6.2Structural analysis of bacterial morphology
during storage after low瞕osage nanowire瞐ssisted
electroporation disinfection
2.6.3Summary of the tendency of bacterial changes
during storage after disinfection
2.7Summary of this chapter
Chapter 3Effect of the nanowire morphology and electrode structure
on microbial inactivation
3.1Research background
3.2Experimental materials and methods
3.2.1Experimental reagents
3.2.2Preparation of porous electrodes modified with
nanowires of different morphologies
3.2.3Construction of nanowire瞐ssisted electroporation
disinfection devices with different electrode
structures
3.2.4Characterization of CuO nanowire瞞odified
copper foam electrode
3.2.5Microbes and water samples used in
experiments
3.2.6Nanowire瞐ssisted electroporation for microbial
disinfection
3.2.7Investigation of the disinfection contribution
of positive and negative electrode and
optimization of the reactor design
3.3Investigation on the effect of CuO nanowire morphology
on bacterial disinfection
3.3.1Factors impacting the morphology of
CuO
nanowires
3.3.2Study on the impact of CuO nanowire
morphology on bacterial disinfection
3.4Investigation on the effect of electrode structure on
bacterial disinfection
3.4.1Investigation of the effect of electrode pore
size on bacterial disinfection
3.4.2Investigation of the effect of electrode thickness
on bacterial disinfection
3.5Investigation on the effect of electrode arrangement
on bacterial disinfection
3.5.1Contribution of positive and negative electrodes
to microbial inactivation during nanowire瞐ssisted
electroporation disinfection
3.5.2Reactor optimization to enhance electroporation
disinfection efficiency
3.6Summary of this chapter
Chapter 4Fabrication of high瞕urability nanowire瞞odified electrodes
and investigation of their microbial
disinfection performance
4.1Research background
4.2Experimental materials and methods
4.2.1Experimental reagents
4.2.2Fabrication of Cu3P nanowire瞞odified copper
foam electrode
4.2.3Construction of nanowire瞐ssisted electroporation
disinfection devices
4.2.4Characterization and elemental analysis
of
nanowire瞞odified electrode
4.2.5Microbes and water samples used in
experiments
4.2.6Cu3P nanowire瞐ssisted electroporation for
microbial disinfection
4.2.7Analysis of microbial inactivation
mechanisms
4.2.8Analysis of the disinfection efficiency using
nanowire瞞odified electrodes for
long瞭erm operation
4.2.9Analysis of the loss mechanism of electrode
during long瞭erm operation
4.3Fabrication and characterization of Cu3P
nanowire瞞odified electrodes
4.3.1Fabrication of Cu3P nanowire瞞odified
electrodes
4.3.2Characterization of Cu3P nanowire瞞odified
electrodes
4.4Disinfection efficiency and mechanism of nanowire
assisted electroporation using Cu3P nanowire瞞odified
electrodes
4.4.1Disinfection efficiency of nanowire瞐ssisted
electroporation using Cu3P nanowire瞞odified
electrodes
4.4.2Disinfection mechanisms of nanowire瞐ssisted
electroporation using Cu3P nanowire瞞odified
electrodes
4.5Long瞭erm disinfection performance and electrode
loss mechanism
4.5.1Long瞭erm disinfection performance of Cu3P
nanowire瞞odified electrodes
4.5.2Electrode loss phenomenon during the
long瞭erm operation
4.5.3Loss mechanism of Cu3P nanowire瞞odified
electrode
4.6Summary of this chapter















