技术教育社区
www.teccses.org

高等数学基础(第二版)(上下册)

封面

作者:王立冬等

页数:520

出版社:科学出版社

出版日期:2022

ISBN:9787030722225

电子书格式:pdf/epub/txt

内容简介

本书是以高等学校高等数学本科课程教学大纲和少数民族预科教育一年制数学教学大纲为依据,在首届辽宁省教材建设奖高等教育类优秀教材《高等数学基础》的基础上修订编写而成。
本书着眼素质教育,注重数学内容、思维之间内在的联系,条理、结构、脉络清晰,注重培养学生数学思维能力,便于教学。在教材内容选取和讲述上,本着从简单到复杂、从特殊到一般的原则,力求深入浅出,难易结合,易教易学。本书分上、下两册,上册主要内容包括:函数、极限、连续函数、导数与微分、微分中值定理与导数的应用、不定积分;下册主要内容包括:定积分、定积分的应用、微分方程、二元函数微积分、无穷级数。为了增加可读性与趣味性,同时还增加了一些数学思维方法、数学家简介及解题常见方法,兼顾本科、预科各个层次学生学习状况,配备习题。

目录

目录

前言

第一章 函数 1

第一节 集合——微积分的基础,数学大厦的基石 1

第二节 函数——微积分的研究对象,变量依赖关系的数学模型 5

第三节 初等函数 17

第四节 隐函数、参数方程确定的函数与极坐标方程确定的函数 35

第五节 常用经济函数 42

复习题一 45

附录一 一些常用初等代数公式及结论 47

附录二 一些常用的曲线及其方程 49

课外阅读(一) 55

第二章 极限 58

第一节 数列极限 58

第二节 数列极限运算法则 数列极限存在准则 71

第三节 函数极限——微积分研究问题使用的工具,变量无限变化的数学模型 81

第四节 函数极限的性质和运算 97

第五节 两个重要极限 106

第六节 无穷小的比较 116

复习题二 123

课外阅读(二) 125

第三章 连续函数 128

第一节 连续函数——具有特殊极限的函数类,变量连续变化的数学模型 128

第二节 连续函数的运算与初等函数的连续性 135

第三节 闭区间上连续函数的性质 138

复习题三 143

课外阅读(三) 145

第四章 导数与微分 147

第一节 导数的概念 147

第二节 求导法则与导数公式 162

第三节 高阶导数 172

第四节 隐函数与由参数方程所确定的函数的导数相关变化率 179

第五节 函数的微分 186

复习题四 193

课外阅读(四) 194

第五章 微分中值定理与导数的应用 198

第一节 微分中值定理——导数的性质及应用 198

第二节 洛必达法则 210

第三节 泰勒公式 219

第四节 函数的单调性与极值 228

第五节 函数的最大值与最小值 237

第六节 函数曲线的凹凸性与拐点 241

第七节 渐近线、函数图形的描绘 247

第八节 曲率 253

第九节 导数与微分在经济中的简单应用 258

复习题五 268

课外阅读(五) 270

第六章 不定积分 275

第一节 不定积分——微分法则的逆运算 275

第二节 不定积分的换元积分法 282

第三节 分部积分法 301

第四节 有理函数的不定积分 306

复习题六 316

课外阅读(六) 317

参考文献 321

附录 积分表 322

节选

第一章 函数 微积分研究的主要对象是函数,使用的主要工具是极限,研究问题所使用的主要方法是分类、类比,具体的内容就是通过极限这个工具对函数进行分类(无穷小类、无穷大类、连续类、可导类、可积类等).它与初等数学所研究函数的重要区别是:初等数学研究的大多都是具体函数的具体性质,如研究函数的单调性、奇偶性、周期性等,而微积分除研究具体函数的具体性质外,主要研究抽象函数的抽象性质,如连续性、可导性、可积性等. 古典数学与现代数学讨论问题的重要区别之一是:古典数学主要是在数集上讨论问题,而现代数学主要是在一般的集合上讨论问题.所以为了方便把古典数学的思想方法推广到现代数学上去,并且准确而深刻地理解函数概念,集合知识是不可缺少的.本章将简要地介绍集合的一些基本概念,并在此基础上重点介绍函数的概念. 第一节 集合——微积分的基础,数学大厦的基石 Sets—the foundation of calculus, the cornerstone of mathematics 一、集合 Sets 1.集合的概念 Concepts of sets 集合在数学领域具有无可比拟的特殊重要性.集合论的基础是由德国数学家康托尔(Cantor,1845—1918)在19世纪70年代奠定的,经过一大批卓越的数学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位.可以说,当今数学各个分支的几乎所有结果都构筑在严格的集合论理论上.所以,学习高等数学,应首先从集合入手. 所谓集合(简称集)是指具有某种确定性质的对象的全体.组成集合的各个对象称为该集合的元素(element). 习惯上,用大写字母 A, B, C,表示集合,用小写字母 a, b, c,表示集合的元素. 用;用(或)表示. 例1某学校全体男同学组成一个集合 A,而该学校的每个男同学是集合的所有实根构成一个集合 B,而方程的每个实根是集合 B的元素. 例3全体偶数组成一个集合 E,而每个偶数是集合上所有的点构成一个集合 C,而圆周上的点是集合 C 合称为有限集(finite set),如上述例题中的集合 A, B;含有无限多个元素的集合称为无限集(infinite set),如上述例题中的集合 C, E.不含有任何元素的集合称为空集(empty set),记作 2.集合的表示方法 表示集合的方法通常有两种.一种是列举法,即将集合的元素一一列举出来,写在一个花括号内.例如,所有自然数组成的集合可以表示为 N,则 N 这种方法是用集合元素所具有的共同性质来刻画这个集合,即将具有性质. 例如,自然数集 N 数g;所有实数组成的集合可表示成为实数g. 又如例4中集合数g. 二、集合的运算 1.集合的运算 1)子集 图1-1 对于集合,若集合,则,这时就称 (subset),记作,读作 (或).若,且存在,使得,则称 (proper subset),记作集合. 全体自然数的集合,全体整数的集合,全体有理数的集合, 全体实数的集合和全体复数的集合都是经常遇到的集合,我们 约定分别用粗体字母示这些集合,即N 用符号.表示“任意的”,符号.表示“存在”.例如,集合,可以表示为;集合,可以表示为. 正整数、正有理数和正实数的集合分别记为 Z+, Q+和 R+,显然有和. 若且,则称集合 A, B (equality of sets),记作 A B.此时.设 (union set),记作,即或. 它是将(图1-2). 3)交集 设是两个集合,称且为 A B (intersection set),记作,即且. 它是由. 4)差集 设(difference set),记作,即且. 它是由. 图1-2 图1-3 图1-4 例5 设,求. 解. 2.集合运算的性质 (1)交换律. (2)结合律. (3)分配律. (4)幂等律. (5)吸收律. 若,则. 特别地,由于,所以有. 三、区间与邻域 Intervals and neighborhoods 1.区间 Interval 在本书中经常遇到以下形式的实数集的子集——区间.为了书写简练,将各种区间的符号、名称、定义列表如下(表1)(且). 表1区间的符号、名称及定义 2.邻域 Neighborhood 设.数集表示为 U(a,δ),即, 称为径.当不需要注明邻域的半径δ时,常把它表示为 U(a),简称为 a (a,δ),即,也就是在中去掉中心 a,称为 a 半径δ时,常将它表示为. 简称为的子集开区间的右半邻域,开区间称为合,下列式子中正确的是(). (A)(B)(C)(D) 2.数集还可表示为(). (A)去心邻域(B)邻域(C)开区间(D)开区间 3.下列集合是空集的是(). (A)(B)(C)(D) 4.设集合. (A) (B)(C)(D) 5.用区间表示下列不等式的解: (1);(2);(3);(4). 第二节 函数——微积分的研究对象,变量依赖关系的数学模型 Functions—the research object of calculus, the mathematical model of dependent relation between variables 在一个自然现象或技术过程中,常常有几个量同时变化,它们的变化并非彼此无关,而是互相联系的,这是物质世界的一个普遍规律.17世纪初,数学首先从对运动(如天文、航海问题等)的研究中引出了“函数”这个基本概念.在那以后的二百多年里,这个概念在几乎所有的科学研究工作中占据了中心位置. 一、函数的概念 Concepts of functions 1.函数定义 The definition of functions 定义1设非空数集,若对任意的,按照某种确定的法则 f,有唯一确定的与之对应,则称 (function),记作,其中 x (independent variable), y (dependent variable), (domain of definition),函数.对于任意的,称其对应值 (functional value),记作 f(x),即.全体函数值构成的集合称为函数 f (range),常记作,即. 关于函数概念的几点说明: (1)用符号表示书中,为方便起见,我们约定,将指明函数,有时甚至笼统地说是 x 数定义,虽然函数都存在定义域,但常常并不明确指出函数 y f(x)的定义域,这时认为函数的定义域是自明的,即定义域是使函数有意义的实数 x 定义域,那么它的定义域就是使函数有意义的实数 x 义的函数,它的定义域要受实际意义的约束. (3)函数定义指出:对于任意的 x D,按照对应法则 f,对应唯一一个,这样的对应就是所谓的单值对应.反过来,一个就不一定只有一个,使 y f(x).例如函数.对于任意的,对应唯一一个,反之,对于的定义中,要求与单值函数(single valued function).如果取消唯一这个要求,即对应于称为多值函数(multiple valued function). 例如函数是多(双)值函数. 为讨论的方便起见,我们总设法避免函数的多值性.在一定条件下,多值函数可以分裂为若干单值分支.例如,双值函数就可以分成两个单值支:一支是不小于零的,另一支是不大于零的.我们知道方程的图形是中心在原点、半径为 r 图形.两个单值支就相当于把整个圆周分为上下两个半圆周.所以只要把各个分支弄清楚,由各个分支合起来的多值函数也就了如指掌了.本书若无特别说明,所讨论的函数都限于单值函数. 必须注意,定义域和对应法则是确定函数的两大要素.在数学中,两个函数相同是指它们的定义域和对应法则分别相同,至于自变量和因变量用什么字母来表示,则是无关紧要的.例如,函数与的定义域为, 义域不同.而函数定义域和对应法则都相同. 从函数的定义我们可以看出函数概念最重要的要素是对应法则,这种对应法则包含建立已知与未知的对应关系、简单与复杂的对应关系.所以说函数概念本身也蕴含解决问题的思想方法. 2.函数的表示法 函数的表示法一般有三种:表格法、图像法和解析法.这三种方法各有特点,表格法一目了然;图像法形象直观;解析法便于计算和推导.在实际中可结合使用这三种方法.

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《高等数学基础(第二版)(上下册)》
Article link:https://www.teccses.org/1396276.html