技术教育社区
www.teccses.org

高等数学(上册 第2版 微课版 )

封面

作者:张弢

页数:276

出版社:人民邮电出版社

出版日期:2022

ISBN:9787115593382

电子书格式:pdf/epub/txt

内容简介

本书是按照教育部大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合编者多年来的教学实践经验,针对当前学生的知识结构和习惯特点编写而成。全书分为上、下两册。本书为上册,是一元函数微积分部分,共4章,主要内容包括函数、极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程,每节前面配有课前导读,核心知识点配备微课,每章后面附有本章小结、拓展阅读和章节测试。
本书注重知识点的引入方法,使之符合认知规律,易于读者接受,同时,本书精炼了主要内容,使结构更加简洁,思路更加清晰.本书还注重知识的连贯性、例题的多样性,以及习题的丰富性、层次性,使读者在学习数学知识的同时拓宽了视野,欣赏数学之美。
本书可作为高等院校理工科各专业的教材,也可作为社会从业人员的自学参考用书。

作者简介

殷俊锋,同济大学,教授,博导,上海市浦江人才,荣获中国数学会计算数学分会应用数值代数奖,在国际期刊发表30余篇高质量论文。
张弢,2000年9月开始在同济大学教授公共课高等数学A,高等数学B,高等数学C等不同种类的公共基础课,同时担任数学系专业课数学分析、实变函数、泛函分析等授课任务,同时参与数学类精品课程,卓越课程,数学竞赛等项目建设。

本书特色

1.内容经典,例题丰富,配备微课讲解重点难点
2.以二维码方式扩展阅读内容,既体现数学严谨的思维逻辑,又反映数学之美。
3.细化考研题目。配套辅导教材将细致讲解考研题目,培养学生的逻辑思维能力。

目录

第 一章 函数、极限与连续 1

第 一节 集合与函数 1

一、集合的概念 1

二、常用函数 4

习题1-1 9

第 二节 数列极限的定义与计算 10

一、数列极限的概念 10

二、数列极限的计算 13

习题1-2 15

第三节 函数极限的定义与计算 16

一、自变量趋于无穷大时的极限 16

二、自变量趋于有限值时的极限 18

三、函数极限的计算方法 21

习题1-3 23

第四节 极限性质 24

最一、利用极限定义证明 24

二、数列极限的性质 25

三、函数极限的性质 26

最四、极限运算法则的证明 28

习题1-4 30

第五节 两个重要极限 30

一、夹逼定理 31

二、第 一重要极限 33

三、单调有界收敛定理 35

四、第 二重要极限 36

习题1-5 38

第六节 无穷小与无穷大 39

一、无穷小 40

二、无穷大 41

三、无穷小与无穷大的关系 42

四、无穷小的比较 42

五、等价无穷小的应用 44

习题1-6 45

第七节 函数的连续性及其性质 46

一、连续的概念 47

二、函数的间断点 49

三、初等函数的连续性 52

四、闭区间上连续函数的性质 54

习题1-7 56

本章小结 59

章节测试一 61

拓展阅读 63

第 二章 一元函数微分学及其应用 65

第 一节 导数的概念及基本求导公式 65

一、割线与切线 65

二、导数的定义 66

三、简单函数的求导 67

四、左、右导数 68

五、切线与法线方程 69

六、函数的可导性与连续性的关系 70

七、函数的和、差、积、商的求导法则 71

八、反函数的求导法则 72

九、求导公式与基本求导法则 73

习题2-1 74

第 二节 导数的计算法则 75

一、复合函数的求导法则 76

二、高阶导数 78

三、隐函数的导数 81

四、由参数方程确定的函数的导数 82

最五、相关变化率 84

习题2-2 84

第三节 微分的概念与应用 88

一、微分的定义 88

二、基本初等函数的微分公式及微分法则 90

三、微分的几何意义 92

四、近似计算 92

习题2-3 93

第四节 微分中值定理及其应用 95

一、罗尔定理 96

二、拉格朗日(Lagrange)中值定理 98

三、柯西中值定理 100

四、洛必达(L′Hospital)法则 100

习题2-4 103

最第五节 泰勒中值定理 105

一、多项式逼近函数 105

二、麦克劳林公式 108

三、泰勒公式的应用 109

习题2-5 111

第六节 函数的性态与图形 111

一、函数单调性的判别 112

二、函数的极值及其求法 115

三、曲线的凹凸性与拐点 118

四、曲线的渐近线 121

五、函数图形的描绘 122

习题2-6 124

第七节 微分学的实际应用 126

一、第一大值、第一小值 126

二、曲率 128

习题2-7 133

本章小结 135

章节测试二 137

拓展阅读 139

第三章 一元函数积分学及其应用 143

第 一节 不定积分的概念与性质 143

一、原函数 143

二、不定积分 143

三、基本积分公式 145

四、不定积分的性质 146

习题3-1 148

第 二节 不定积分的换元法与分部法 149

一、第 一类换元法(凑微分法) 149

二、第 二类换元法 155

三、分部积分法 158

习题3-2 161

最第三节 有理函数的不定积分 164

一、真分式的分解 164

二、有理函数的不定积分 165

三、三角函数的有理式的不定积分 166

四、可化为有理函数的简单无理根式的

不定积分 167

习题3-3 168

第四节 定积分的概念与性质 169

一、实例分析 170

二、定积分的定义 171

三、定积分的几何意义 173

四、定积分的性质 174

习题3-4 177

第五节 微积分基本定理 178

一、变速直线运动的路程 178

二、积分上限函数 179

三、微积分基本定理 182

习题3-5 184

第六节 定积分的换元法和分部法 186

一、定积分的换元法 186

二、定积分的分部法 190

习题3-6 193

第七节 定积分的几何应用与物理应用 195

一、平面图形的面积 195

二、空间立体的体积 201

三、曲线的弧长 205

最四、定积分在物理上的应用举例 207

习题3-7 209

第八节 反常积分 211

一、无限区间上的反常积分 211

二、无界函数的反常积分(瑕积分) 214

习题3-8 216

本章小结 217

章节测试三 219

拓展阅读 221

第四章 微分方程 227

第 一节 微分方程的概念 227

一、微分方程的引例 227

二、微分方程的基本概念 229

习题4-1 232

第 二节 一阶微分方程 233

一、可分离变量方程 233

二、齐次方程 234

三、一阶线性微分方程 236

习题4-2 239

第三节 二阶微分方程 240

一、可降阶的二阶微分方程 240

二、线性微分方程解的结构 242

三、二阶常系数齐次线性微分方程的解法 244

最四、n 阶常系数齐次线性微分方程的解法 247

五、二阶常系数非齐次线性微分方程的解法 248

习题4-3 250

最第四节 微分方程的实际案例 252

一、一阶微分方程的实际案例 252

二、二阶微分方程的实际案例 255

习题4-4 258

本章小结 259

章节测试四 261

拓展阅读 263

习题答案 266

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《高等数学(上册 第2版 微课版 )》
Article link:https://www.teccses.org/1391239.html