技术教育社区
www.teccses.org

TensorFlow Lite移动端深度学习

封面

作者:朱元涛

页数:266

出版社:机械工业出版社

出版日期:2022

ISBN:9787111698791

电子书格式:pdf/epub/txt

内容简介

TensorFlow Lite移动端深度学习循序渐进地讲解了在移动设备中使用TensorFlow Lite开发机器学习和深度学习程序的核心知识,并通过具体实例演练了各知识点的使用方法和流程。全书共9章,分别讲解了人工智能开发基础、编写个TensorFlow Lite程序、创建模型、转换模型、推断、优化处理、微控制器、物体检测识别系统和姿势预测器。全书简洁而不失技术深度,内容丰富全面,以简明的文字介绍了复杂的案例。同时书中配有二维码视频,结合视频讲解可加深对相关内容的理解,是学习TensorFlow Lite开发的实用教程。 TensorFlow Lite移动端深度学习适用于已经了解Python语言基础语法和TensorFlow基础,希望进一步提高自己Python开发水平的读者阅读,还可以作为大中专院校和相关培训学校的专业教程。

作者简介

资深机器学习开发工程师和架构师。现就职于浪潮云,专门从事大数据挖掘和通信大数据研发工作。
曾在谷歌应用市场发布多款经典应用程序并取得不错的销售业绩。精通Python、C#、Java等语言,并且精通Android、iOS等主流移动端和Linux底层嵌入式开发技术。

本书特色

适读人群 :了解Python语言基础语法和TensorFlow基础,希望进一步提高自己Python开发水平的读者 大中专院校和相关培训学校的师生来自IT大厂一线研发工程师的实战经验,详解TensorFlow Lite机器学习和深度学习程序开发的关键技术。作者为浪潮云资深机器学习开发专家。

目录

TensorFlow Lite移动端深度学习

前言

第1章 人工智能开发基础/

1.1人工智能的基础知识/

1.1.1人工智能介绍/

1.1.2人工智能的发展历程/

1.1.3人工智能的两个重要发展阶段/

1.1.4和人工智能相关的几个重要概念/

1.2机器学习/

1.2.1什么是机器学习/

1.2.2机器学习的3个发展阶段/

1.2.3机器学习的分类/

1.2.4深度学习和机器学习的对比/

1.3使用Python学习人工智能开发/

1.3.1Python在人工智能方面的优势/

1.3.2常用的Python库/

1.4TensorFlow开源库/

1.4.1TensorFlow介绍/

1.4.2TensorFlow的优势/

1.4.3TensorFlow Lite介绍/

第2章 编写第一个TensorFlow Lite程序/

2.1安装环境要求/

2.1.1硬件要求/

2.1.2软件要求/

2.2安装TensorFlow /

2.2.1使用pip安装TensorFlow/

2.2.2使用Anaconda安装TensorFlow/

2.2.3安装TensorFlow Lite解释器/

2.2.4解决速度过慢的问题/

2.3准备开发工具/

2.3.1使用PyCharm开发并调试运行TensorFlow程序/

2.3.2使用Colaboratory开发并调试运行TensorFlow程序/

2.4开发TensorFlow Lite程序的流程/

2.4.1准备模型/

2.4.2转换模型/

2.4.3使用模型进行推断/

2.4.4优化模型/

2.5在Android中创建TensorFlow Lite/

2.5.1需要安装的工具/

2.5.2新建Android工程/

2.5.3使用JCenter中的TensorFlow Lite AAR/

2.5.4运行和测试/

第3章 创建模型/

3.1创建TensorFlow模型/

3.1.1在PyCharm环境实现/

3.1.2在Colaboratory环境实现/

3.2基于TensorFlow机器学习核心算法创建模型/

3.2.1线性回归算法/

3.2.2逻辑回归算法/

3.2.3二元决策树算法/

3.2.4Bagging算法/

3.2.5Boosting算法/

3.2.6随机森林算法/

3.2.7K近邻算法/

第4章 转换模型/

4.1TensorFlow Lite转换器/

4.1.1转换方式/

4.1.2将TensorFlow RNN转换为TensorFlow Lite/

4.2将元数据添加到 TensorFlow Lite 模型/

4.2.1具有元数据格式的模型/

4.2.2使用Flatbuffers Python API添加元数据/

4.3使用TensorFlow Lite Task Library/

4.4手写数字识别器/

4.4.1系统介绍/

4.4.2创建TensorFlow数据模型/

4.4.3将Keras模型转换为TensorFlow Lite/

4.4.4Android手写数字识别器/

第5章 推断/

5.1TensorFlow Lite推断的基本知识/

5.1.1推断的基本步骤/

5.1.2推断支持的平台/

5.2运行模型/

5.2.1在Java程序中加载和运行模型/

5.2.2在 Swift程序中加载和运行模型/

5.2.3在Objective睠程序中加载和运行模型/

5.2.4在Objective睠中使用C API/

5.2.5在 C++中加载和运行模型/

5.2.6在 Python中加载和运行模型/

5.3运算符操作/

5.3.1运算符操作支持的类型/

5.3.2从TensorFlow中选择运算符/

5.3.3自定义运算符/

5.3.4融合运算符/

5.4使用元数据进行推断/

5.4.1元数据推断基础/

5.4.2使用元数据生成模型接口/

5.4.3使用TensorFlow Lite代码生成器生成模型接口/

5.5通过Task库集成模型/

5.5.1Task Library可以提供的内容/

5.5.2支持的任务/

5.5.3集成图像分类器/

5.6自定义输入和输出/

第6章 优化处理/

6.1性能优化/

6.2TensorFlow Lite委托/

6.2.1选择委托/

6.2.2评估工具/

6.3TensorFlow Lite GPU代理/

6.3.1在Android中使用TensorFlow Lite GPU代理/

6.3.2在iOS中使用TensorFlow Lite GPU代理/

6.3.3在自己的模型上使用GPU代理/

6.4硬件加速/

6.4.1使用GPU加速的优势/

6.4.2Android中的硬件加速/

6.4.3iOS中的硬件加速/

6.4.4输入/输出缓冲器/

6.5模型优化/

6.5.1模型量化/

6.5.2训练后量化/

6.5.3训练后动态范围量化/

6.5.4训练后整数量化/

第7章 微控制器/

7.1适用于微控制器的 TensorFlow Lite/

7.2官方示例/

7.2.1Hello World示例/

7.2.2微语音示例/

7.3C++库/

7.3.1文件结构/

7.3.2开始新项目/

7.3.3写入新设备/

7.3.4构建二进制文件/

7.3.5优化内核/

7.3.6生成 Arduino 库/

第8章 物体检测识别系统/

8.1系统介绍/

8.2准备模型/

8.2.1模型介绍/

8.2.2自定义模型/

8.3Android物体检测识别器/

8.3.1准备工作/

8.3.2页面布局/

8.3.3实现主Activity/

8.3.4物体识别界面/

8.3.5相机预览界面拼接/

8.3.6lib_task_api方案/

8.3.7lib_interpreter方案/

8.4iOS物体检测识别器/

8.4.1系统介绍/

8.4.2视图文件/

8.4.3相机处理/

8.4.4处理TensorFlow Lite模型/

第9章 姿势预测器/

9.1系统介绍/

9.2准备模型/

9.2.1身体部位监测点说明/

9.2.2导入TensorFlow Lite模型/

9.3Android姿势预测器/

9.3.1准备工作/

9.3.2页面布局/

9.3.3实现主Activity/

9.3.4图像处理/

9.3.5姿势识别/

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《TensorFlow Lite移动端深度学习》
Article link:https://www.teccses.org/1341467.html