技术教育社区
www.teccses.org

fastai与PyTorch深度学习实践指南

封面

作者:(美)Jeremy Howard,(法)

页数:22,594页

出版社:东南大学出版社

出版日期:2021

ISBN:9787564194543

电子书格式:pdf/epub/txt

内容简介

深度学习往往被视为数学博士和大型科技公司的专属领域。但正如这本实践指南所展示的那样,熟练使用Python的程序员只需很少的数学背景、少量的数据和最少的代码,就可以在深度学习方面取得令人印象深刻的成果。怎么样才能做到?使用fastai,这是第一为最常用的深度学习应用提供一致接口的库。本书作者Jeremy Howard和Sylvain Gugger是fastai的创建者,他们向你展示了如何使用fastai和PyTorch在各种任务上训练一个模型。你还将逐步深入了解深度学习理论,以便充分理解幕后的算法。在计算机视觉、自然语言处理、表格型数据和协同过滤中训练模型;学习在实践中至关重要的第一深度学习技术;通过了解深度学习模型的工作原理,提高准确性、速度和可靠性;了解如何将你的模型转化为Web应用;从头开始实现深度学习算法;考虑你的工作所带来的道德影响;从PyTorch联合创始人Soumith Chintala的前言中获得启示。

目录

Preface

Foreword

Part I. Deep Learning in Practice

1. Your Deep Learning Journey

Deep Learning Is for Everyone

Neural Networks: A Brief History

Who We Are

How to Learn Deep Learning

Your Projects and Your Mindset

The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)

Your First Model

Getting a GPU Deep Learning Server

Running Your First Notebook

What Is Machine Learning?

What Is a Neural Network?

A Bit of Deep Learning Jargon

Limitations Inherent to Machine Learning

How Our Image Recognizer Works

What Our Image Recognizer Learned

Image Recognizers Can Tackle Non-Image Tasks

Jargon Recap

Deep Learning Is Not Just for Image Classification

Validation Sets and Test Sets

Use Judgment in Defining Test Sets

A Choose Your Own Adventure Moment

Questionnaire

Further Research

2. From Model to Production

The Practice of Deep Learning

Starting Your Project

The State of Deep Learning

The Drivetrain Approach

Gathering Data

From Data to DataLoaders

Data Augmentation

Training Your Model, and Using It to Clean Your Data

Turning Your Model into an Online Application

Using the Model for Inference

Creating a Notebook App from the Model

Turning Your Notebook into a Real App

Deploying Your App

How to Avoid Disaster

Unforeseen Consequences and Feedback Loops

Get Writing!

Questionnaire

Further Research

3. Data Ethics

Key Examples for Data Ethics

Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits

Feedback Loops: YouTube’s Recommendation System

Bias: Professor Latanya Sweeney “Arrested”

Why Does This Matter?

Integrating Machine Learning with Product Design

Topics in Data Ethics

Recourse and Accountability

Feedback Loops

Bias

Disinformation

Identifying and Addressing Ethical Issues

Analyze a Project You Are Working On

Processes to Implement

The Power of Diversity

……

Part II. Understanding fastai’s applications

Part III. Foundations of Deep Learning

Part IV. Deep learning from Scratch

Index

下载地址

立即下载

(解压密码:www.teccses.org)

Article Title:《fastai与PyTorch深度学习实践指南》
Article link:https://www.teccses.org/1251879.html